Design Challenges in Multi-GHz Microprocessors

Bill Herrick
Director, Alpha Microprocessor Development

www.compaq.com
Introduction

- **Moore’s Law** (the trend that the demand for IC functions and the capability of the semiconductor industry to meet that demand, will double every 1.5 to 2 years) has worked well during the last 30 years.
- Difficult challenges face the industry attempting to maintain the pace.
- With collaboration, understanding, vision and innovation this trend can continue for high performance microprocessors.
Topics

- Historical Trends
 - Intel
 - Alpha chips and design style
 - Observations and trends

- Technology Predictions
 - ITRS 1999

- Key Design Challenges
 - Clocking and power - how Alpha has managed
 - Clocking and power - long term solutions
Historical Trends: Then and Now

Circa 1970
- 12µ PMOS
- 1000 transistors
- 5 - 10 mm² die size
- 10V supply
- 50 - 100 kHz frequency
- 100 - 200 mW
- 16 pin DIPs

Circa 2000
- 0.18µ CMOS
- 10 - 100 million transistors
- 300 - 400 mm² die size
- 2.5V supply
- 500 - 1000 MHz frequency
- 50 - 100 W
- 500 - 1000 pin BGAs
Intel Performance History

- MIPS
- Date of Introduction
- 4004
- 8080
- 8086
- 80286
- 386
- 486
- Pentium
- Pentium II
- Pentium Pro
- Xeon
- Pentium III
Intel Trends

- **The 4004 (1971)**
 - 2300 transistors in a 10u process,
 - 108kHz operation, executing 0.06 MIPs
- **Pentium III (1999)**
 - 28 million transistors in a 0.18u process,
 - 733MHz operation, executes 2000 MIPs
- **Over nearly 30 years**
 - performance has increased 30,000x,
 - transistor count has increased 10,000x
 - frequency has increased 7,000x
 - die size has increased only 25x.
 - Moore’s law predicts 30,000x to 1,000,000x improvement over this period.
Alpha Architecture

- Alpha is a true 64-bit load/store RISC architecture
- Alpha is designed for high clock speed
 - Simple, fixed length (32-bit) instructions
 - Minimal instruction ordering constraints
 - No conditions codes
 - No branch delay slots
- Chip micro-architecture is carefully chosen to maximize performance without impacting cycle time
Alpha Performance History

Date of Introduction

SPECint95

EV4-200
EV5-300
EV56-400
EV56-500
EV56-600
EV6-575
EV67-700
EV4 Chip Overview

- 0.75µm 3LM N-well CMOS, \(L_{\text{eff}} = 0.5\mu m, T_{\text{ox}} = 10.5\text{nm} \)
- 3.3V Vdd
- 200MHz @100°C & 3.3V
- 16 gate delays per cycle
- 30W @200MHz & 3.3V
- 13.9mm x 16.8mm (233 mm²)
- 1.7 Million Transistors
 ~ 0.85 Million Logic Transistors
- 431 pin PGA (291 signals)
EV4 Micro-Architecture

- Dual In-Order Instruction Issue
 - single-issue Integer & single-issue FP
- Fully Pipelined (except Integer MUL and FP DIV)
 - 7-stage Integer and 10-stage FP pipelines
- 1-bit Branch Prediction: 2k-entry BHT
- 8kB direct-mapped I-Cache and 8kB direct-mapped write-through D-Cache
- 32 Integer and 32 FP Registers, 64b/entry
- Flexible external interface: shared 128b/64b data, 34b address L2 cache and system interface
EV5 Chip Overview

- 0.50μm 4LM N-well CMOS, $L_{\text{eff}}=0.365\mu m$, $T_{\text{ox}}=9.0\text{nm}$
- 3.3V Vdd
- 350MHz @100 °C & 3.3V
- 14 gate delays per cycle
- 60W @350MHz & 3.3V
- 16.5mm x 18.1mm (298 mm²)
- 9.3 Million Transistors
 ~ 2.5 Million Logic Transistors
- 499 pin PGA (294 signals)
EV5 Micro-Architecture

- Quad In-Order Instruction Issue
 - dual-issue Integer & dual-issue FP
- 7-stage Integer and 9-stage FP pipelines
 - FP latencies reduced by 2 cycles
- 2-bit Branch Prediction: 2k-entry BHT
- 8kB I-Cache and 8kB write-through D-Cache
- 96kB unified on-chip L2 Cache
- Improved external interface supports a non-blocking cache scheme
EV6 Chip Overview

- 0.35\(\mu\)m 6LM N-well CMOS, \(L_{\text{eff}}=0.25\mu\)m, \(T_{\text{ox}}=6.0\text{nm}\)
- 2.2V Vdd
- 575MHz @100 °C & 2.2V
- 12 gate delays per cycle
- 90W @575MHz & 2.2V
- 16.7mm x 18.8mm (314 mm\(^2\))
- 15.2 Million Transistors
 ~ 6 Million Logic Transistors
- 587 pin PGA (374 signals)
EV6 Micro-Architecture

- Four-wide Instruction Fetch
- Tournament Branch Predictor
- Out-of-Order Execution Pipelines
 - Quad-speculative-issue integer pipeline
 - Dual-speculative-issue floating-point pipeline
- 80 In-flight Instructions
- Registers: 80 Integer, 72 Floating Point
- Queue Entries: 20 Integer, 15 Floating Point
- 2-Way 64KB L1 On-Chip Instruction and Data Caches
- Up to 16 outstanding off-chip memory references
EV7 Chip Overview

- 0.18μm CMOS technology
- 1.5V Vdd
- Clock frequency >1.0GHz
- 100W
- ~350mm²
- ~100 Million transistors
- EV6 core
- Integrated L2 Cache (1.75 MB 7-way)
- Integrated memory controller (RAMBUS)
- Integrated network interface
EV8 Chip Overview

- Clock frequency range 1.0-2.0GHz
- Leading edge 0.125μm CMOS technology
- ~1.2V Vdd
- <150W
- ~250 Million transistors
- Enhanced out-of-order execution
- 8-wide superscalar
- 4-way simultaneous multi-threading (SMT)
- EV7 memory and system enhancements
Alpha Circuit Design Philosophy

- Transistor level circuit design
- Broad range of circuit styles and logic families
 - Complementary CMOS
 - Dynamic logic
 - DCVSL (cascode)
 - Ratioed logic
- Key components to enable *high performance*
 - On-chip clock generation and distribution (low-skew, fast edge)
 - Latching (low latency)
 - Low noise on-chip power distribution
 - On-chip signal integrity management
Complexity Trends

- Process scaling has continued steadily
- Planarization has enabled an increase in the number of interconnect layers
- Transistor counts have increased dramatically with the L2 cache SRAMs
- Additionally, design team size has increased ~40% per generation
- Opportunities to manage complexity and productivity
 - Fundamental understanding and modeling of process and circuit element behaviors
 - High level design methods
 - CAD
 - Design reuse
 - Micro-architecture
Power Dissipation Trends

- Power consumption is increasing
 - Better cooling technology needed
- Supply current is increasing faster!
- On-chip signal integrity will be a major issue
- Power and current distribution are critical
- Opportunities to slow power growth
 - Accelerate Vdd scaling
 - Low \square dielectrics & thinner (Cu) interconnect
 - SOI circuit innovations
 - Clock system design
 - micro-architecture
Performance Trends

- Performance has increased significantly (7x) faster than frequency
- Performance tracks transistor count when L2 cache ignored
 - Transistor budget has increased more than performance when L2 cache is considered but
 - benchmarks did not reflect larger applications
- Opportunities to continue performance improvements
 - Continued scaling of devices, interconnect and dielectrics
 - Clock distribution
 - Micro-architecture
 - System design
Micro-Architecture Trends

- Trends have included
 - Wider super-scalar machines, deep pipelines
 - Larger register, L1 caches
 - On-chip L2 caches
 - Out of order execution
 - Sophisticated branch prediction, predication, speculation
 - Integrated memory and network controllers
 - SMT
 - Less idle logic but more bookkeeping logic

- Future opportunities include
 - Floating point performance improvements
 - Vectors
 - Thread-level speculation
 - More pipelining
 - Better on-chip communications
 - Banking, replicating structures
 - Clustering functional units
 - On-chip SMP

ASP DAC 2000
Challenging Design Trends

- Micro-architecture and logic design are stressed as frequency has increased faster than scaling.
- Further reducing the number of gate delays per cycle will be difficult.
- Cycles to communicate across chip track with frequency.
- Clock edge rates are not scaling.
- Opportunities to continue performance increases:
 - Chip implementation design
 - Clock system design
 - Micro-architecture

![Graphs showing changes in logic levels, gate delays, and cycles across chip with frequency.](image)
ITRS -1999 Key Messages

- No major issues through 130 nm generation, but significant issues for 100 nm generation (2005)
- Continued technology scaling will require the introduction of new process materials and new devices
- Transistor densities will continue the historical trends ~2X / 2yrs
- Clock frequency increases will slow compared to historical trends
<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
<th>2005</th>
<th>2008</th>
<th>2011</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation (nm)</td>
<td>180</td>
<td>130</td>
<td>130</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>L_{eff} (nm)</td>
<td>140</td>
<td>100</td>
<td>80</td>
<td>65</td>
<td>45</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Devices (M)</td>
<td>110</td>
<td>220</td>
<td>441</td>
<td>882</td>
<td>2494</td>
<td>7053</td>
<td>19949</td>
</tr>
<tr>
<td>Chip Size (mm²)</td>
<td>450</td>
<td>450</td>
<td>567</td>
<td>622</td>
<td>713</td>
<td>817</td>
<td>937</td>
</tr>
<tr>
<td>Signals</td>
<td>768</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1280</td>
<td>1408</td>
<td>1472</td>
</tr>
<tr>
<td>Pins</td>
<td>1600</td>
<td>2007</td>
<td>2518</td>
<td>3158</td>
<td>4437</td>
<td>6234</td>
<td>8758</td>
</tr>
</tbody>
</table>
ITRS-1999 The Roadmap (continued)

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
<th>2005</th>
<th>2008</th>
<th>2011</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation (nm)</td>
<td>180</td>
<td>130</td>
<td>130</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Clock (MHz)</td>
<td>1200</td>
<td>1454</td>
<td>1724</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3600</td>
</tr>
<tr>
<td>Local Clk (MHz)</td>
<td>1250</td>
<td>1767</td>
<td>2490</td>
<td>3500</td>
<td>6000</td>
<td>10000</td>
<td>13500</td>
</tr>
<tr>
<td>IO (MHz)</td>
<td>480</td>
<td>722</td>
<td>932</td>
<td>1035</td>
<td>1285</td>
<td>1540</td>
<td>1800</td>
</tr>
<tr>
<td>Wiring Levels</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Vdd (V)</td>
<td>1.8</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
<td>0.9</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Power (W)</td>
<td>90</td>
<td>115</td>
<td>140</td>
<td>160</td>
<td>170</td>
<td>174</td>
<td>183</td>
</tr>
</tbody>
</table>
ITRS - 1999 Highlights

- **Transistors**
 - Drive currents will remain constant through 2014 at 750 μA/μm for NFETs and 350 μA/μm for PFETs
 - Leakage currents will double every 3 years from 5 nA/μm in 1999 to 160 nA/μm in 2014

- **Interconnect**
 - Use of Cu and low k dielectrics will become standard
 - Local interconnect delays will scale with gate delays
 - Global interconnect delays, even with repeaters will not scale with gate delays
 - Coplanar waveguides, free space RF and optical interconnect may be needed longer term
ITRS - 1999 Highlights (2)

- **Packaging**
 - Maximum junction temperature must be reduced from 100°C to 85°C by 2002 for reliability concerns
 - Significant θ_{ja} improvements will be required to maintain air cooling system solutions: a 50% reduction by 2002 and another 30% by 2014

- **Modeling & Simulation**
 - 2D and 3D interconnect models with inductance and transmission line effects will be needed
 - Transistor models of non-quasi-static effects and quantum mechanical gate effects will be needed; gate currents will become important
 - OCV modeling will become necessary
 - CPU efficient and accurate models will be essential
ITRS - 1999 Highlights (3)

- **Design Productivity**
 - Design team sizes will not exceed 300 people
 - Design cycle times will decrease from 36 months in 1999 to 30 months in 2005 to 24 months in 2014

- **Verification and Test**
 - Verification has become more than 50% of the total design effort
 - Use of formal verification will increase from 15% now to 30% in 2005 to 60% in 2014
 - BIST coverage will increase from 20% now to 40% in 2005 to 70% in 2014
EV4 Clocking

Clock waveform

- 2 phase single wire clock, distributed globally
 - Low skew
 - Fast edge rate
- 1 clock driver channel
 - 3.5nF clock load
 - 35 cm final driver width

Location of clock driver on die
EV4 Latches

First single wire clock implementation
- Race immune latch
- Level sensitive design
- 2 latches per cycle
- Can build logic into first stage of latch
- t_{cycle} latch overhead is approximately 25%

CLK high loading latch
EV4 Thermal Gradient

Temp = 46°C

Temp = 76°C
EV5 Clocking

2 phase single wire clock, distributed globally

- 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load
 - 58 cm final driver width

- Local inverters for latching
- Conditional clocks in caches to reduce power
- More complex race checking
- Device variation

Clock waveform

Location of clock driver on die

t_{\text{rise}} = 0.35\text{ns} \quad t_{\text{skew}} = 150\text{ps} \quad t_{\text{cycle}} = 3.3\text{ns}
EV5 Latches

Reduce t_{dq} and reduce clock load

- Local clock inverter complicated race issues
- Level sensitive design
- 2 latches per cycle
- Can build logic into first and last stages of latch
- t_{cycle} latch overhead is approximately 15%
- Smaller, faster and lower power than EV4 latch
EV5 Thermal Gradient
EV5 Global Clock Skew
EV5 Local Clock Skew
EV6 Clocking

Global clock waveform

- 2 Phase, with multiple conditional buffered clocks
 - 2.8 nF clock load
 - 40 cm final driver width
- Local clocks can be gated “off” to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

$t_{cycle} = 1.67 \text{ns}$
$t_{rise} = 0.35 \text{ns}$
$t_{skew} = 50 \text{ps}$
EV6 Latches

Conditional clocks to reduce power
- Static design
- 1 latch per cycle
- Edge triggered to simplify race rules
- Can build logic into latch
- t_{cycle} latch overhead is approximately 15%
EV6 Clock Results

GCLK Skew
(at Vdd/2 Crossings)

GCLK Rise Times
(20% to 80% Extrapolated to 0% to 100%)

ASP DAC 2000
Active Skew Management and Multiple Clock Domains

- widely dispersed drivers
- DLLs compensate static and low-frequency variation
- divides design and verification effort
- DLL design and verification is added work
- tailored clocks

EV7 Clock Hierarchy

ASP DAC 2000
Power Consumption

- Clocks consume the largest fraction of power
- Driving inter-unit busses consumes as much power as intra-unit gates and interconnect
EV4 - 3 Metal Layers

3rd “coarse and thick” metal layer added to the technology for EV4 design

Power supplied from two sides of the die via 3rd metal layer

2nd metal layer used to form power grid

90% of 3rd metal layer used for power/clock routing
EV5 - 4 Metal Layers

4th “coarse and thick” metal layer added to the technology for EV5 design

Power supplied from four sides of the die
Grid strapping done all in coarse metal
90% of 3rd and 4th metals used for power/clock routing
EV6 - 6 Metal Layers

2 reference plane metal layers added to the technology for EV6 design

- Solid planes dedicated to Vdd/Vss
- Significantly lowers resistance of grid
- Lowers on-chip inductance

RP2/Vdd
Metal 4
Metal 3
RP1/Vss
Metal 2
Metal 1

ASP DAC 2000
Reference Plane Example

Simulation Methodology

Extract Inductance & Resistance versus Frequency
Model Skin Effect Both Vertically and Horizontally
Construct Time-Domain SPICE Model and Simulate with SPICE
Use FF Devices, High Vdd & Low Temperature to Aggravate Inductive Effects

RP2
Metal 4
Metal 3
Metal 2
Metal 1
Substrate

RP1
Metal 4
Metal 3
Metal 2
Metal 1
Substrate

Victims

ASP DAC 2000
Reference Plane Example (continued)

RP2 Only

M3 Victim
M3 Aggressors
M1 Aggressors

Time (ns)

RP1 & RP2

M3 Victim
M3 Aggressors
M1 Aggressors

Time (ns)

ASP DAC 2000
De-coupling Capacitor Ratios

- **EV4**
 - total effective switching capacitance = 12.5nF
 - 128nF of de-coupling capacitance
 - de-coupling/switching capacitance ~ 10x

- **EV5**
 - 13.9nF of switching capacitance
 - 160nF of de-coupling capacitance

- **EV6**
 - 34nF of effective switching capacitance
 - 320nF of de-coupling capacitance -- not enough!
EV6 De-coupling Capacitance

Design for $\Delta I_{dd} = 25$ A @ $V_{dd} = 2.2$ V, $f = 600$ MHz

- 0.32-µF of on-chip de-coupling capacitance was added
 - Under major busses and around major gridded clock drivers
 - Occupies 15-20% of die area
- 1-µF 2-cm2 Wirebond Attached Chip Capacitor (WACC) significantly increases “Near-Chip” de-coupling
 - 160 V_{dd}/V_{ss} bondwire pairs on the WACC minimize inductance
EV6 WACC

389 Signal - 198 VDD/VSS Pins

389 Signal Bondwires
395 VDD/VSS Bondwires
320 VDD/VSS Bondwires

WACC
Microprocessor

Heat Slug

587 IPGA
Clocking Futures

- Frequencies will continue to scale
- Clock edge rates are not scaling as well
- Multiple clock zones required
 - Architectures minimizing global communications
 - Adaptive and passive synchronization techniques
 - DLLs in the near term
 - Clocking schemes utilizing encoding, extraction, multi-state and local phase optimization to compensate for skew and latency
- Asynchronous or quasi-synchronous architectures
Power Futures

- Low power modes
- Power tradeoffs in the micro-architecture
- More emphasis on a low power circuits
 - Reducing clock load
 - Low swing differential clocks
 - Low swing buses
 - Adiabatic circuits, clocked drivers, retractile logic
 - Asynchronous design
- Reference plans also help to minimize inductive and wave effects
Conclusion

- Physical technology advances will enable multi-GHz chips
- Key challenges in power, clocking, complexity, and verification must be addressed
- New tools and methods will be needed
- CAD developers and chip designers must collaborate more closely than ever
- With a solid understanding of the fundamentals, a clear vision of the product and ingenuity, we will realize multi-GHz microprocessors