Design Challenges in Multi-GHz Microprocessors

Bill Herrick Director, Alpha Microprocessor Development

www.compaq.com

Introduction

- Moore's Law (the trend that the demand for IC functions and the capability of the semiconductor industry to meet that demand, will double every 1.5 to 2 years) has worked well during the last 30 years
- Difficult challenges face the industry attempting to maintain the pace
- With collaboration, understanding, vision and innovation this trend can continue for high performance microprocessors

Topics

- Historical Trends
 - Intel
 - Alpha chips and design style
 - Observations and trends
- Technology Predictions
 - ITRS 1999
- Key Design Challenges
 - Clocking and power how Alpha has managed
 - Clocking and power long term solutions

Historical Trends: Then and Now

<u>Circa 1970</u>

- 12µ PMOS
- 1000 transistors
- 5 10 mm² die size
- 10V supply
- 50 100 kHz frequency
- ◆ 100 200 mW
- 16 pin DIPs

<u>Circa 2000</u>

- ♦ 0.18µ CMOS
- 10 100 million transistors
- 300 400 mm² die size
- 2.5V supply
- 500 1000 MHz frequency
- ◆ 50 100 W
- ◆ 500 1000 pin BGAs

Intel Performance History

Intel Trends

- The 4004 (1971)
 - 2300 transistors in a 10u process,
 - 108kHz operation, executing 0.06 MIPs

Pentium III (1999)

- 28 million transistors in a 0.18u process,
- 733MHz operation, executes 2000 MIPs
- Over nearly 30 years
 - performance has increased 30,000x,
 - transistor count has increase 10,000x
 - frequency has increased 7,000x
 - die size has increased only 25x.
 - Moore's law predicts 30,000x to 1,000,000x improvement over this period.

COMPAQ

Alpha Architecture

- Alpha is a true 64-bit load/store RISC architecture
- Alpha is designed for high clock speed
 - Simple, fixed length (32-bit) instructions
 - Minimal instruction ordering constraints
 - No conditions codes
 - No branch delay slots
- Chip micro-architecture is carefully chosen to maximize performance without impacting cycle time

EV4 Chip Overview

- 0.75 μ m 3LM N-well CMOS, L_{eff}=0.5 μ m, T_{ox}=10.5nm
- 3.3V Vdd
- 200MHz @100 ° C & 3.3V
- 16 gate delays per cycle
- 30W @200MHz & 3.3V
- 13.9mm x 16.8mm (233 mm²)
- 1.7 Million Transistors

 0.85 Million Logic
 Transistors
- 431 pin PGA (291 signals)

EV4 Micro-Architecture

Dual In-Order Instruction Issue single-issue Integer & single-issue FP Fully Pipelined (except Integer MUL and FP DIV) • 7-stage Integer and 10-stage FP pipelines 1-bit Branch Prediction: 2k-entry BHT • 8kB direct-mapped I-Cache and 8kB directmapped write-through D-Cache 32 Integer and 32 FP Registers, 64b/entry Flexible external interface: shared 128b/64b data, 34b address L2 cache and system interface

EV5 Chip Overview

- 0.50 μ m 4LM N-well CMOS, L_{eff}=0.365 μ m, T_{ox}=9.0nm
- 3.3V Vdd
- 350MHz @100 ° C & 3.3V
- 14 gate delays per cycle
- 60W @350MHz & 3.3V
- 16.5mm x 18.1mm (298 mm²)
- 9.3 Million Transistors
 - ~ 2.5 Million Logic Transistors
- 499 pin PGA (294 signals)

EV5 Micro-Architecture

Quad In-Order Instruction Issue dual-issue Integer & dual-issue FP • 7-stage Integer and 9-stage FP pipelines • FP latencies reduced by 2 cycles 2-bit Branch Prediction: 2k-entry BHT • 8kB I-Cache and 8kB write-through D-Cache 96kB unified on-chip L2 Cache Improved external interface supports a nonblocking cache scheme

EV6 Chip Overview

- 0.35 μ m 6LM N-well CMOS, L_{eff}=0.25 μ m, T_{ox}=6.0nm
- 2.2V Vdd
- 575MHz @100 ° C & 2.2V
- 12 gate delays per cycle
- 90W @575MHz & 2.2V
- 16.7mm x 18.8mm (314 mm²)
- 15.2 Million Transistors
 - ~ 6 Million Logic Transistors
- 587 pin PGA (374 signals)

EV6 Micro-Architecture

- Four-wide Instruction Fetch
- Tournament Branch Predictor
- Out-of-Order Execution Pipelines
 - Quad-speculative-issue integer pipeline
 - Dual-speculative-issue floating-point pipeline
- 80 In-flight Instructions
- Registers: 80 Integer, 72 Floating Point
- Queue Entries: 20 Integer, 15 Floating Point
- 2-Way 64KB L1 On-Chip Instruction and Data Caches
- Up to 16 outstanding off-chip memory references

EV7 Chip Overview

- 0.18µm CMOS technology
- ◆ 1.5V Vdd
- Clock frequency >1.0GHz
- ◆ 100W
- ~100 Million transistors
- EV6 core
- Integrated L2 Cache (1.75 MB 7-way)
- Integrated memory controller (RAMBUS)
- Integrated network interface

EV8 Chip Overview

Clock frequency range 1.0-2.0GHz Leading edge 0.125µm CMOS technology ◆ ~1.2V Vdd <150W ~250 Million transistors Enhanced out-of-order execution 8-wide superscalar 4-way simultaneous multi-threading (SMT) EV7 memory and system enhancements

Alpha Circuit Design Philosophy

- Transistor level circuit design
- Broad range of circuit styles and logic families
 - Complementary CMOS
 - Dynamic logic
 - DCVSL (cascode)
 - Ratioed logic
- Key components to enable high performance
 - On-chip clock generation and distribution (lowskew, fast edge)
 - Latching (low latency)
 - Low noise on-chip power distribution
 - On-chip signal integrity management

Complexity Trends

Process Features

- Process scaling has continued steadily
- Planarization has enabled an increase in the number of interconnect layers
- Transistor counts have increased dramatically with the L2 cache SRAMs
- Additionally, design team size has increased ~40% per generation
- Opportunities to manage complexity and productivity
 - Fundamental understanding and modeling of process and circuit element behaviors

- High level design methods
- CAD
- Design reuse
- Micro-architecture

Power Dissipation Trends

Power Dissipation

- Power consumption is increasing
 - Better cooling technology needed
- Supply current is increasing faster!
- <u>On-chip signal integrity will be a major</u> <u>issue</u>
- Power and current distribution are critical
- Opportunities to slow power growth
 - Accelerate Vdd scaling
 - Low dielectrics & thinner (Cu) interconnect
 - SOI circuit innovations
 - <u>Clock system design</u>
 - micro-architecture

Performance Trends

Clock Speed

- Performance has increased significantly (7x) faster than frequency
- Performance tracks transistor count when L2 cache ignored
 - Transistor budget has increased more than performance when L2 cache is considered but
 - benchmarks did not reflect larger applications
- Opportunities to continue performance improvements
 - Continued scaling of devices, interconnect and dielectrics
 - <u>Clock distribution</u>
 - Micro-architecture
 - System design

Micro-Architecture Trends

- Trends have included
 - Wider super-scalar machines, deep pipelines
 - Larger register, L1 caches
 - On-chip L2 caches
 - Out of order execution
 - Sophisticated branch prediction, predication, speculation
 - Integrated memory and network controllers
 - SMT
 - Less idle logic but more bookkeeping logic

- Floating point performance improvements
- Vectors
- Thread-level speculation
- More pipelining
- Better on-chip communications
 - Banking, replicating structures
 - Clustering functional units
- On-chip SMP
 - ASP DAC 2000

Challenging Design Trends

Logic Levels per Cycle

- Micro-architecture and logic design are stressed as frequency has increased faster than scaling
- Further reducing the number of gate delays per cycle will be difficult
- Cycles to communicate across chip track with frequency
- Clock edge rates are not scaling
- Opportunities to continue performance increases
 - Chip implementation design
 - Clock system design
 - Micro-architecture

ITRS -1999 Key Messages

- No major issues through 130 nm generation, but significant issues for 100 nm generation (2005)
- Continued technology scaling will require the introduction of new process materials and new devices
- Transistor densities will continue the historical trends ~2X / 2yrs
- Clock frequency increases will slow compared to historical trends

ITRS-1999 The Roadmap

	1999	2001	2003	2005	2008	2011	2014
Generation (nm)	180	130	130	100	70	50	35
L _{eff} (nm)	140	100	80	65	45	31	21
Devices (M)	110	220	441	882	2494	7053	19949
Chip Size (mm ²)	450	450	567	622	713	817	937
Signals	768	1024	1024	1024	1280	1408	1472
Pins	1600	2007	2518	3158	4437	6234	8758

ITRS-1999 The Roadmap (continued)

	1999	2001	2003	2005	2008	2011	2014
Generation (nm)	180	130	130	100	70	50	35
Clock (MHz)	1200	1454	1724	2000	2500	3000	3600
Local Clk (MHz)	1250	1767	2490	3500	6000	10000	13500
IO (MHz)	480	722	932	1035	1285	1540	1800
Wiring Levels	7	7	8	9	9	10	10
Vdd (V)	1.8	1.5	1.5	1.2	0.9	0.6	0.6
Power (W)	90	115	140	160	170	174	183

ITRS - 1999 Highlights

Transistors

- Drive currents will remain constant through 2014 at 750 $\mu A/\mu m$ for NFETs and 350 $\mu A/\mu m$ for PFETs
- Leakage currents will double every 3 years from 5 nA/µm in 1999 to 160 nA/µm in 2014

Interconnect

- Use of Cu and low dielectrics will become standard
- Local interconnect delays will scale with gate delays
- Global interconnect delays, even with repeaters will not scale with gate delays
- Coplanar waveguides, free space RF and optical interconnect may be needed longer term

ITRS - 1999 Highlights (2)

Packaging

- Maximum junction temperature must be reduced from 100°C to 85°C by 2002 for reliability concerns
- Significant θ_{ja} improvements will be required to maintain air cooling system solutions: a 50% reduction by 2002 and another 30% by 2014
- Modeling & Simulation
 - 2D and 3D interconnect models with inductance and transmission line effects will be needed
 - Transistor models of non-quasi-static effects and quantum mechanical gate effects will be needed; gate currents will become important
 - OCV modeling will become necessary
- CPU efficient and accurate models will be essential

ITRS - 1999 Highlights (3)

- Design Productivity
 - Design team sizes will not exceed 300 people
 - Design cycle times will decrease from 36 months in 1999 to 30 months in 2005 to 24 months in 2014
- Verification and Test
 - Verification has become more than 50% of the total design effort
 - Use of formal verification will increase from 15% now to 30% in 2005 to 60% in 2014
 - BIST coverage will increase from 20% now to 40% in 2005 to 70% in 2014

EV4 Clocking

- 2 phase single wire clock, distributed globally
 - Low skew
 - Fast edge rate
- 1 clock driver channel
 - 3.5nF clock load
 - 35 cm final driver width

EV4 Latches

First single wire clock implementation

- Race immune latch
- Level sensitive design
- 2 latches per cycle
- Can build logic into first stage CLKof latch
- t_{cycle} latch overhead is approximately 25%

CLK high loading latch

EV4 Thermal Gradient

 2 phase single wire clock, distributed globally

- 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load
 - 58 cm final driver width
- Local inverters for latching
- Conditional clocks in caches to reduce power
- More complex race checking
- Device variation

EV5 Latches

Reduce t_{dq} and reduce clock load

- Local clock inverter complicated race issues
- Level sensitive design
- 2 latches per cycle
- Can build logic into first and last stages of latch
- t_{cycle} latch overhead is approximately 15%
- Smaller, faster and lower power than EV4 latch

CLK high loading latch

COMPAQ.

EV5 Thermal Gradient

EV5 Global Clock Skew

ASP DAC 2000

COMPAQ

EV5 Local Clock Skew

ASP DAC 2000

Compaq

EV6 Clocking

t_{cycle}= 1.67ุn**≴**⊺

2 Phase, with multiple conditional buffered clocks

- 2.8 nF clock load
- 40 cm final driver width
- Local clocks can be gated "off" to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

EV6 Latches

Conditional clocks to reduce power

- Static design
- 1 latch per cycle
- Edge triggered to simplify race rules
- Can build logic into latch
- t_{cycle} latch overhead is approximately 15%

EV6 Clock Results

GCLK Skew (at Vdd/2 Crossings) GCLK Rise Times (20% to 80% Extrapolated to 0% to 100%)

EV7 Clock Hierarchy

Active Skew Management and Multiple Clock Domains

- + widely dispersed drivers
- + DLLs compensate static and lowfrequency variation
- + divides design and verification effort
- DLL design and verification is added work
- + tailored clocks

Power Consumption

- Clocks consume the largest fraction of power
- Driving inter-unit busses consumes as much power as intra-unit gates and interconnect

EV4 - 3 Metal Layers

<u>3rd "coarse and thick" metal layer added to the</u> <u>technology for EV4 design</u> Power supplied from two sides of the die via 3rd metal layer

2nd metal layer used to form power grid 90% of 3rd metal layer used for power/clock routing

EV6 - 6 Metal Layers

2 reference plane metal layers added to the technology for EV6 design Solid planes dedicated to Vdd/Vss Significantly lowers resistance of grid

Lowers on-chip inductance

Reference Plane Example

Simulation Methodology

Extract Inductance & Resistance versus Frequency Model Skin Effect Both Vertically and Horizontally Construct Time-Domain SPICE Model and Simulate with SPICE Use FF Devices, High Vdd & Low Temperature to Aggravate Inductive Effects

Reference Plane Example (continued)

RP2 Only

RP1 & RP2 ASP DAC 2000

De-coupling Capacitor Ratios

♦ EV4

total effective switching capacitance = 12.5nF
128nF of de-coupling capacitance
de-coupling/switching capacitance ~ 10x
EV5
13.9nF of switching capacitance
160nF of de-coupling capacitance
EV6

34nF of effective switching capacitance

• 320nF of de-coupling capacitance -- not enough!

EV6 De-coupling Capacitance

Design for $\Delta Idd = 25 A @ Vdd = 2.2 V$, f = 600 MHz

- 0.32-µF of on-chip de-coupling capacitance was added
 - Under major busses and around major gridded clock drivers
 - Occupies 15-20% of die area
- 1-µF 2-cm² Wirebond Attached Chip Capacitor (WACC) significantly increases "Near-Chip" decoupling
 - 160 Vdd/Vss bondwire pairs on the WACC minimize inductance

COMPAQ

Clocking Futures

- Frequencies will continue to scale
- Clock edge rates are not scaling as well
- Multiple clock zones required
 - Architectures minimizing global communications
 - Adaptive and passive synchronization techniques
 - DLLs in the near term
 - Clocking schemes utilizing encoding, extraction, multi-state and local phase optimization to compensate for skew and latency
- Asynchronous or quasi-synchronous architectures

Power Futures

- Low power modes
- Power tradeoffs in the micro-architecture
- More emphasis on a low power circuits
 - Reducing clock load
 - Low swing differential clocks
 - Low swing buses
 - Adiabatic circuits, clocked drivers, retractile logic
 - Asynchronous design
- Reference plans also help to minimize inductive and wave effects

Conclusion

- Physical technology advances will enable multi-GHz chips
- Key challenges in power, clocking, complexity, and verification must be addressed
- New tools and methods will be needed
- CAD developers and chip designers must collaborate more closely than ever
- With a solid understanding of the fundamentals, a clear vision of the product and ingenuity, we will realize multi-GHz microprocessors

