A High-Throughput Low-Power Fully Parallel 1024-bit $\frac{1}{2}$-Rate Low Density Parity Check Code Decoder in 3-Dimensional Integrated Circuits

C.-J. Richard Shi
Department of Electrical Engineering
University of Washington, Seattle, WA
1/24/2006

Presented by Sheldon X. D. Tan
Department of Electrical Engineering
University of California, Riverside, CA
Low-density parity-check (LDPC) codes are emerging as error correcting standards for many military and commercial applications, due to their near Shannon-limit performance.

- Military Joint Tactical Radio Systems (JTRS)
- NASA Space Communications Project
- NASA OMNI Project

The LDPC message passing decoding algorithm and its fully-parallel implementation

- Direct instantiation of Tanner-graph representation of LDPC code
- Two types of computation nodes, named variable nodes and check nodes
- Ideal for high-throughput and low-power applications

\[
H \cdot c = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
c_4 \\
c_5 \\
c_6 \\
\end{pmatrix} = 0
\]

H-matrix representation of LDPC code

Tanner-graph of a LDPC code
• However, fully-parallel implementation has serious interconnect design challenges utilizing standard 2D technology.

• To address these interconnect design challenges, we explore the use of 3D IC technology.

MIT Lincoln Lab’s 3D process
- 0.18 um FDSOI substrates
- 3 Tiers
- 3 Metal layers per Tier
- Dense distributed 3D-vias

Cross-section of 3-tier 3D integration
The 3D 3-Tier LDPC Design

Top-View of 3-tier Final Layout

• The main data path is designed as 16 parallel three-stage pipelines.

• This allows the decoder to achieve a high throughput of 2Gb/s with a clock frequency of 128MHz. (128 MHz x 16 = 2 Gb/s)

The simulated code performance

– The blue curve shows the BER vs. SNR performance up to a BER of 10^{-5}.

– The green curve shows fast iteration convergence with increasing SNR.
Summary

<table>
<thead>
<tr>
<th>2D vs. 3D</th>
<th>area (mm*mm)</th>
<th>total wire length (m)</th>
<th>max. wire length before buffer insertion (mm)</th>
<th>max. wire length after buffer insertion (mm)</th>
<th>buffer used</th>
<th>clock skew (ns)</th>
<th>power dissipation (mw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D design</td>
<td>18.238*15.92 = 290.3</td>
<td>182.4</td>
<td>13.82</td>
<td>4</td>
<td>32900</td>
<td>2.33</td>
<td>750</td>
</tr>
<tr>
<td>3D design</td>
<td>(6.4*6.227)*3 = 119.5</td>
<td>67.4</td>
<td>8.68</td>
<td>4.1</td>
<td>24636</td>
<td>1</td>
<td>430</td>
</tr>
<tr>
<td>improvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250%</td>
<td>270%</td>
<td>160%</td>
<td>130%</td>
<td>230%</td>
<td>43%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ Overall significant improvements based on real silicon comparison
(8M transistor LDPC ASIC; MIT-LL 3D 3tier/2D processes)

Contribution

• The first large-scale 3D ASIC implementation (2M gates).
• The first demonstration, by real silicon tape out and simulation, of a 3D IC process shown to yield an order of magnitude improvement over the corresponding 2D process, in terms of power-delay-area product (1.75 * 2.5 * 2.5 = 11).
• Proves the viability of our automated 3D design flow through the implementation of a large-scale silicon ASIC design.