A Built-in Power Supply Noise Probe for Digital LSIs

Mitsuya Fukazawa, Koichiro Noguchi,
Makoto Nagata, Kazuo Taki

Department of Computer and Systems Engineering
Kobe University
Built-in noise probing technique

- Dynamic PS drop analysis
 - time-varying digital activity distribution
 - AC transfer characteristics of on/off chip LRC network
- Profile PS noise distribution
 - chip level
 - PS-grid resolution
 - vector-length acquisition
SF+Gm detector

➢ Simplest way of noise probing, w/o sampling
➢ Footprint comparable to D-type flip flop (FF) cell

Vbias

Vnoise

SF

Gm

I_{out}
Test circuit design

#Cell Row

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IoutN1 IoutP1 IoutN2 IoutP2 VDDD GNDD

pSF+Gm nSF+Gm pSF+Gm nSF+Gm

32-bit SR 32-bit LFSR 32-bit SR 32-bit LFSR 32-bit SR 32-bit LFSR

32-bit SR 32-bit LFSR 32-bit SR 32-bit LFSR 32-bit SR 32-bit LFSR

32-bit SR 32-bit LFSR 32-bit SR 32-bit LFSR 32-bit SR 32-bit LFSR

Vcal

N1 P1 N2 P2
Measured dynamic drop waveforms

V_{dd} (mV) vs. V_{gnd} (mV)

Fck = 40 MHz

V_{drop}