IEEE Standard 1500 Based Interconnect Diagnosis for Delay and Crosstalk Faults

Katherine Shu-Min Li, Yao-Wen Chang*, Chauchin Su, Chung-Len Lee, and Jwu E Chen**

National Chiao Tung University, National Taiwan University*, National Central University**
Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion
Why Interconnect Testing and Diagnosis are Difficult?

Complexity issue
- Too many rings
- Consider a bus-connected system
 - m cores, n bus lines
 - Assuming each core passed by a ring at most once (a lower bound)

rings of length l from n buses (connecting i cores): \(C_i^n \)

all rings: \(\sum_{i=2}^{\min(m,n)} C_i^m C_i^n \) \(\rightarrow \) Exponential!
Introduction (Cont’d)

- Interconnect dominates performance
 - Interconnect Diagnosis
- SoC Design Methodology
 - IEEE Std.1500 Based Interconnect Diagnosis
- Other Applications: PCB, MCM, SiP
- Interconnect Test
 - Goal
 - Interconnect Detection Problem => Pass/Fail
 - Interconnect Diagnosis Problem => Fault Location
 - Target Fault Models
 - Delay Fault
 - Crosstalk Glitch Fault
 - Traditional Stuck-at Fault, Open Fault
 - Oscillation Ring (OR) Based Test Scheme
Contribution of this Work

- Apply a heuristic algorithm to generate test rings quickly (R_t)
 - Previous Work on Oscillation Ring (OR) Based Interconnect Test Scheme for SOC
 - ASPDAC 2005
- Provide a fast diagnosability check algorithm
 - Similar to fast fault simulation
- Provide a heuristic algorithm to generate extra diagnosis rings
 - Similar to IORD test pattern generation
- Present two optimization testing process
 - Concurrent OR
 - Adaptive OR
Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion
Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
 - Effectiveness
 - Delay Fault: longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Crosstalk Glitch Fault: SoC simulation results

- Oscillation Ring Test Scheme for
 - Interconnect Detection Problem (IORT)
 - Interconnect Diagnosis Problem (IORD)
Test Architecture for Delay and Crosstalk Detection and Delay Measurement
Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
 - Effectiveness
 - Delay Fault: longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Crosstalk Glitch Fault:

Oscillation Ring Test Scheme for
- Interconnect Detection Problem (ORT)
- Interconnect Diagnosis Problem (ORD)
IEEE Std.1500 Wrapper Cell Design

(a) Input

(b) Output

Modified with force Inversion
Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
- Effectiveness
 - Delay Fault:
 - longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Delay Measurement
 - Crosstalk Glitch Fault:
Longest Test Ring in HP circuit
Simulated Waveforms of Longest and Shortest Test Rings of HP Circuit

Longest Ring of 38 ns

\[f_{\text{min}} = 21.316 \text{ MHz} \]

Shortest Ring of 2.8 ns

\[f_{\text{max}} = 357.143 \text{ MHz} \]
Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
- Effectiveness
 - Delay Fault:
 - longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Delay Measurement
 - Crosstalk Glitch Fault:
Delay Measurement

\[f_i = f \times \frac{n_i}{n} \]

Let \(f_i \) be 4 MHz to 400 MHz
\((f_{\text{min}} = 4\text{MHz}, \ f_{\text{max}} = 400\text{MHz})\)

\[\varepsilon = \frac{1}{f_{\text{min}} \times T_0} \leq \zeta \]

\(\xi \) be at least is 0.001

\(\Rightarrow n_{\text{min}} \geq 1000 \)
\(\Rightarrow T_0 \geq 250\mu s \)
\(\Rightarrow T_0 = 250\mu s \) (OscTest Spec.)
Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
- Effectiveness
 - Delay Fault:
 - longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Delay Measurement
 - Crosstalk Glitch Fault:
 - longest ring in HP circuit with 5 wrapper cells
Crosstalk Glitch Fault Detection –
longest ring in HP with 5 wrapper cells

oscillation circuit

Oscillation Signal

Counter output

Glitches on victim net
Crosstalk Glitch Detection (cont’d)

Detector output

Xtalk-induced Glitch

Oscillation Signal

After 5 wrapper cells

Counter output
Modified Input Wrapper Cell for Crosstalk Glitch Faults

Pulse detector – an inverter with special W/L

normal wrappe

To Core

OscTest

sel

SI

IN

SO
Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Effectiveness
 - Delay Fault: longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Crosstalk Glitch Fault:

- Oscillation Ring Test Scheme for
 - Interconnect Detection Problem (IORT)
 - Interconnect Diagnosis Problem (IORD)
Oscillation Ring Test Scheme

- Single-Fault Assumption
- Interconnect Detection Problem (IORT)
 - Pass or Fail \Rightarrow Edge-Covering Problem
 - Goal: Fault Detection on Test Rings
 - Interconnect Detection Model
- Interconnect Diagnosis Problem (IORD)
 - Fault Diagnosis \Rightarrow Fault Location Problem
 - Goal: Optimal Resolution to Net Segment
 - Interconnect Diagnosis Model
An Example SOC Circuit for Interconnect Test

Hypernet

(a) Hypergraph of SoC Circuit with multiple-terminal nets

(b) Interconnect Test Modeling
Oscillation Ring Test Scheme

- **Single-Fault Assumption**
- **Interconnect Detection Problem (IORT)**
 - Pass or Fail \Rightarrow Edge-Covering Problem
 - Goal: Faults on Test Rings
 - Interconnect Detection Model
- **Interconnect Diagnosis Problem (IORD)**
 - Fault Diagnosis \Rightarrow Fault Location Problem
 - Goal: Optimal Resolution to Net Segment
 - Interconnect Diagnosis Model
Interconnect Detection Model

2-pin nets \(N_{11} = n_{11} + n_{12}, \ N_{12} = n_{11} + n_{13} \)
Oscillation Ring Test Scheme

- Single-Fault Assumption
- Interconnect Detection Problem (ORT)
 - Pass or Fail \Rightarrow Edge-Covering Problem
 - Goal: Faults on Test Rings
 - Interconnect Detection Model
- Interconnect Diagnosis Problem (ORD)
 - Fault Diagnosis \Rightarrow Fault Location Problem
 - Goal: Optimal Resolution to Net Segment
 - Interconnect Diagnosis Model
Interconnect Diagnosis Model

(a) Hypernet
(b) Interconnect Diagnosis Model

For Diagnosis: Every Edge Influences Different Rings => Optimal Diagnosis Resolution is Edge
Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Concluding Remarks
Interconnect Diagnosis Algorithm

- Diagosalibility Conditions
- Heuristic Diagosalibility Check
- Number of Tests
- Interconnect Diagnosis Algorithm
 - IORT (Interconnect Oscillation Ring Test)
 - IORD (Interconnect Oscillation Ring Diagnosis)
An Interconnect Diagnosis Graph Example to Show Diagnosability Conditions

\[r_1 = r_2 = r_3 = r_4 = \{ e_i, e_j, e_k \} \]

\[r_5 = \{ e_j, e_k \} \]

\[R_i = \{ r_1, r_2, r_3, r_4 \} \]

\[R_j = R_k = \{ r_1, r_2, r_3, r_4, r_5 \} \]

\[E_j = E_k = r_1 \cap r_2 \cap r_3 \cap r_4 \cap r_5 = \{ e_j, e_k \} \Rightarrow E_i \neq E_j = E_k \]
An Interconnect Diagnosis Graph Example
An Illustrative SoC Circuit for Interconnect Diagnosis

(a) Hypergraph

(b) Interconnect Diagnosis Model

=> Optimal Resolution is Edge
An Illustrative Diagnosability Example

\[r_1 = \{e_1, e_2, e_3, e_6\} \]
\[r_2 = \{e_1, e_3, e_5\} \]
\[r_3 = \{e_1, e_4, e_6\} \]

For Test Rings thru \(e_1\)
\[\Rightarrow R_1 = \{r_1, r_2, r_3\} \]
\[\Rightarrow |R_1| = 3 \]
\[\Rightarrow \text{Syndrome} = [1,1,1] \]
Matrices for the Heuristic Diagnosability Checking

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_3</th>
<th>e_6</th>
<th>e_2</th>
<th>e_4</th>
<th>e_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_3</th>
<th>e_6</th>
<th>e_2</th>
<th>e_4</th>
<th>e_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(b)

Complexity for check: $O(n^2m)$
Flow Chart of Diagnosability Checking

Sort all edges e_i according to $|R_i|$.

Pick an edge e_i.

If $|E_i| = 1$, then:

- Yes: Compare e_i to all e_j with $|R_j| = |R_i|$.

Otherwise:

- No: Compare e_i to all e_j with $|R_j| = |R_i|$.

If there exists an e_j such that $E_j = E_i$:

- Yes: Edge e_i is diagnosable, remove e_i from all rings in R_j with $|R_j| = |R_i|$.

Otherwise:

- No: All edges processed or not enough resolution.

Yes: All edges processed or not enough resolution.

No: All edges processed or not enough resolution.
Interconnect Diagnosis Algorithm

- Diagonosability Conditions
- Heuristic Diagonosability Check
- Number of Tests
- Interconnect Diagnosis Algorithm
 - IORT (Interconnect Oscillation Ring Test)
 - IORD (Interconnect Oscillation Ring Diagnosis)
Number of Tests

- IORT ($|R_t|$)
 - Lower Bound: 1
 - Upper Bound: n

- IORD ($|R_d|$)
 - Previous Example: $n/2$ distinct rings
 - N-bus Example: $n-1$ rings
 - Random Case: $|R_d| = |R_t| + \text{additional Diagnosis Rings}$
 predetermined rings
Theorem for Upper Bound of Predetermined Diganosis

Assume:

- m equivalence classes, whose sizes are s_1, s_2, ..., s_m, respectively.
- The upper bound on the number of additional diagnosis rings “$|R_d| - |R_t|$” as theoretical results:

$$\sum_{i=1}^{m} (S_i - 1) = \sum_{i=1}^{m} S_i - m = \# \text{NoDiag} - \# \text{EquClass}$$
An Illustrated Example of Predetermined Diganosis Ring Generation

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_3</th>
<th>e_6</th>
<th>e_2</th>
<th>e_4</th>
<th>e_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_3</th>
<th>e_6</th>
<th>e_2</th>
<th>e_4</th>
<th>e_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Add r_4 to distinguish between e_3 and e_6 in Group of $|R_i|=2$

=> Syndrome of e_3 and e_6 is different!
Interconnect Diagnosis Algorithm

- Interconnect Diagnosability Analysis
- Heuristic Diagnosability Check
- Number of Tests
- Interconnect Diagnosis Algorithm
 - IORT (Interconnect Oscillation Ring Test)
 - IORD (Interconnect Oscillation Ring Diagnosis)
Diagnosis Ring Generation Procedure

1. Test Ring Generation (R_t)
2. Diagnosability Check
 - Generate a Diagnosis Ring (R_a)
3. Diagnosability Check
 - Enough diagnosis resolution?
 - Yes
 - No
Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Concluding Remarks
Optimization Techniques for Interconnect Diagnosis

- Concurrent Diagnosis: under Worst Case Scenario
 - Scan Path Constraint
 - Shared Edge Constraint
- Adaptive Diagnosis (R_a)
 - Use almost same test cost with IORT (R_t) only to reduce test time efficiently
Scan Path Constraints

Core Boundary
Concurrent Test

Scan path conflict

Shared edge conflict

(a) Conflict Graph

(b) Graph coloring
Optimization Techniques for Interconnect Diagnosis

- Concurrent Diagnosis
 - Scan Path Constraint
 - Shared Edge Constraint
- Adaptive Diagnosis (R_a)
 - Construct adaptive diagnosis tree
 - Diagnosis cost
 - Best Case: Balanced adaptive tree
 - Worst Case: Skewed adaptive tree
Adaptive Diagnosis Tree

Diagnosability Checking Matrix
Upper Bound of Adaptive Diagnosis

- $|R_t|$: the number of test rings for detection (IORT)
- L_h: the length of the longest test ring
- Best Case
 - If the tree is balanced, the minimum number of diagnosis patterns required is $\left\lceil \log(n + 1) \right\rceil$
- Worst case for Skewed Adaptive Tree,
 - Apply $|R_t|$ rings to find out that there is a faulty net, and
 - The last ring contains L_h net segments that are all passed by the ring only. It takes up to L_h-1 rings to distinguish these L_h possible faults, and thus the maximum number of diagnosis rings is $|R_t| + (L_h-1)$.
Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion
Experimental Results
for Interconnect Diagnosis both for
Predetermined and Adaptive Methods

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Statistics</th>
<th>Predetermined</th>
<th>Analysis</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#core</td>
<td>#pad</td>
<td>#hyp</td>
<td>#netseg.</td>
</tr>
<tr>
<td>ac3</td>
<td>27</td>
<td>75</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>ami33</td>
<td>33</td>
<td>42</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>ami49</td>
<td>49</td>
<td>22</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>apte</td>
<td>9</td>
<td>73</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td>hp</td>
<td>11</td>
<td>45</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>xerox</td>
<td>10</td>
<td>2</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Compar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results – Concurrent Test Sessions

| Circuit | $|R_d|$ | $|R_c|$ (worst case) | $|R_d|-|R_c|$ |
|---------|-------|---------------------|----------------|
| ac3 | 374 | 373 | 1 (0.27%) |
| ami33 | 303 | 290 | 17 (5.86%) |
| ami49 | 386 | 352 | 34 (9.66%) |
| apte | 122 | 119 | 3 (2.52%) |
| hp | 164 | 160 | 4 (2.50%) |
| xerox | 342 | 327 | 15 (4.59%) |
| Comparison | 1.0432 | 1 | 4.57% |
Experimental Results – Comparison between Theoretical Bounds and Experimental Results

| Circuit | #NoDiag | #EqClass | (#NoDiag-#EqClass) | Extra Rings (|R_d|–|R_t|) | (#NoDiag-#EqClass) and (|R_d|–|R_t|) |
|---------|---------|----------|---------------------|----------------|----------------------------------|
| ac3 | 323 | 68 | 255 | 241 | 14 (5.49%) |
| ami33 | 126 | 59 | 67 | 61 | 6 (8.96%) |
| ami49 | 337 | 88 | 249 | 230 | 19 (7.63%) |
| apte | 94 | 40 | 50 | 49 | 1 (2.00%) |
| hp | 145 | 51 | 94 | 82 | 12 (12.77%) |
| xerox | 214 | 86 | 128 | 124 | 4 (3.13%) |
| Comparison | 1.0712 | 1 | 6.64% | | |
Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion
Conclusion

- Present an Interconnect OR Test scheme for interconnect faults in SOC circuits
 - IORT scheme achieves 100% fault detection coverage for each net
 - IORD scheme achieves the maximum diagnosability for each net segment
- Present fast diagnosability check and diagnosis ring generation
 - with theoretical study and integrated them into the IORD algorithm
 - with difference around 6 or 7% between theoretical and experimental results
Conclusion (Cont’d)

- Two optimization techniques
 - Concurrent OR Test (R_c)
 - Under worst case scenario: average within 5% and up to 9.66%
 - Adaptive OR Test (R_a)
 - Improves by $1.23 \times$ to $2.38 \times$ compared with \textit{predetermined diagnosis} R_d
 - with difference of \textit{predetermined detection} IORT (R_t) by 3.21%
Thank you for your Kind Participation!