TOSHIBA

Low-Power Design Methodology for Module-wise Dynamic Voltage and Frequency Scaling with Dynamic De-skewing Systems

Takeshi Kitahara, Hiroyuki Hara, Shinichiro Shiratake, Yoshiki Tsukiboshi*, Tomoyuki Yoda, Tetsuaki Utsumi and Fimihiro Minami

TOSHIBA Corporation Semiconductor Company *TOSHIBA Microelectronics Corporation

Introduction

Problem Definition

Clock Design Methodology

Experimental Results

Conclusion

Asia and South Pacific Design Automation Conference

Introduction

Dynamic Voltage and Frequency Scaling (DVFS):

ex. Intel Speedstep^(R) technology Transmeta LongRun[™] technology

Asia and South Pacific Design Automation Conference

3

[Chip-wise]

Possibility of lowering supply voltage for Module-wise DVFS is larger than that of Chip-wise DVFS.

Module can work at lower frequency while supply voltage changes, by using Dynamic De-skewing System.

Asia and South Pacific Design Automation Conference

Problem Definition

- Constructing clock design strategy for minimizing clock skew.
- Clarifying setup and hold timing constraints with clock skew taken into consideration.

=> Module-wise DVFS with dynamic de-skewing system

Determining supply voltage value for lower clock frequency. => Module-wise DVFS, Chip-wise DVFS

Clock Network of Dynamic De-skewing System

Clock-delay changes in DVFS module, according to supply voltage.

Asia and South Pacific Design Automation Conference

Delay Control Circuit (DCC)

Asia and South Pacific Design Automation Conference

2006-1-26

(1)Equalizing DELAY_{Fmax} and DELAY_{Fhalf}, by adding delay buffers appropriately.

(2)Generating clock tree structure by adding clock buffers to DVFS and non-DVFS modules.

Clock Design Strategy (Cont.)

(3)Equalizing $DELAY_{RA}$ and $DELAY_{RB}$, by adding delay buffers appropriately.

(4)Adding or removing one delay buffer on return signal, to adjust total delay.

Timing Constraints

Setup and hold timing constraints can be expressed with three parameters for following two cases.

- α : delay of minimum delay buffer
- **β** : maximum clock skew among flip-flops
- Y : unit delay in Delay Control Circuit (DCC)

Scalable Polynomial Delay Model (SPDM)

Cell delay can be expressed by three parameters.

$$Delay = Delay(c,s,v) = \sum_{i,j,k=0}^{l,m,n} a_{ijk} * c^{i} * s^{j} * v^{k}$$

- c : output capacitance
- s : input slew
- v: supply voltage

Path delay can be expressed by polynomial expression, so we can obtain value of *VDDmin* by solving *n*-th degree inequality.

Experimental Results

H.264/MPEG-4 Audio/Visual Codec LSI [2]

Module-wise DVFS technique was applied to "Audio Module".

90nm CMOS technology Frequency : 180MHz/90MHz Voltage: 1.2V/0.9V (DVFS module) 1.2V (non-DFVS module) 2.5V (eDRAM)

Clock Delay Distribution

Without clock design methodology

---- DVFS(VDDmin) ---- DVFS(VDDmax) ---- non-DVFS

<u>Clock Delay Distribution (Cont.)</u>

With clock design methodology

- DVFS(VDDmin) - DVFS(VDDmax) - non-DVFS

Timing Slack in DVFS module

Timing was analyzed with SPDM library for various supply voltage.

Supply Voltage (V)

Freq. = 90MHz

Power Dissipation of Codec LSI

DVFS module	Chip-wise	Module-wise	Module-wise
(Audio Module)	(1.20V/0.90V)	(1.20V/0.90V)	(1.20V/0.82V)
decoding	5.3mW	2.5mW	2.1mW
	(100.0%)	(47.1%)	(39.6%)
encoding	6.8mW	3.3mW	2.7mW
	(100.0%)	(48.5%)	(39.7%)

DVFS module +	Chip-wise	Module-wise	Module-wise
non-DVFS modules	(1.20V/0.90V)	(1.20V/0.90V)	(1.20V/0.82V)
decoding	41.3mW	38.5mW	38.1mW
	(100.0%)	(93.2%)	(92.3%)
encoding	50.9mW	47.4mW	46.8mW
	(100.0%)	(93.1%)	(91.9%)

Conclusion

- Presented design methodology for module-wise DVFS.
- Explained clock design strategy to minimize clock skew between flip-flop in DVFS module and one in non-DFVS module.
- Showed effectiveness for reducing power through experimental results.
- If designers want to reduce power further more, design and circuit will become more complicated.
- To design such complicated LSI's, collaboration among circuit engineers, LSI engineers and methodology engineers has become more indispensable than ever.