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Introduction
Dynamic Voltage and Frequency Scaling (DVFS):

ex. Intel Speedstep(R) technology
     Transmeta LongRunTM technology
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Transition intervals
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Module-wise DVFS

Clock

Module-1

Possibility of lowering supply voltage for Module-wise DVFS is larger 
than that of Chip-wise DVFS.

Module can work at lower frequency while supply voltage changes, by 
using Dynamic De-skewing System.
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Problem Definition

Constructing clock design strategy for minimizing clock 
skew.

Clarifying setup and hold timing constraints with clock 
skew taken into consideration.

            => Module-wise DVFS
                  with dynamic de-skewing system

Determining supply voltage value for lower clock 
frequency.

            => Module-wise DVFS, Chip-wise DVFS
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Clock Network of Dynamic De-skewing System
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Clock-delay changes in DVFS module, according to supply voltage.
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Delay Control Circuit (DCC)

Unit Delay
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Clock Design Strategy

ROOTCLK
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DELAYFmax
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(1)Equalizing DELAYFmax and DELAYFhalf, by adding delay buffers appropriately.
(2)Generating clock tree structure by adding clock buffers to DVFS and 

non-DVFS modules.
LSB} LSA, DVFS,-non or DVFS in {F/FFjFi, for β< |DELAY - DELAY| FjFi ∈∀

skew clock maximum:β

Fi

under VDDA = VDDmax
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Clock Design Strategy (Cont.)
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(3)Equalizing DELAYRA and DELAYRB, by adding delay buffers appropriately.

DELAYRA

DELAYRB

(4)Adding or removing one delay buffer on return signal, to adjust total delay.

DELAYFmax

DELAYFhalf
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Timing Constraints

Setup and hold timing constraints can be expressed with 
three parameters for following two cases.

α

γ
β

: delay of minimum delay buffer
: maximum clock skew among flip-flops
: unit delay in Delay Control Circuit (DCC)

(I) VDDA = VDDmax, FA = Fmax
(II) VDDmin < VDDA < VDDmax, FA = Fhalf
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Scalable Polynomial Delay Model (SPDM)
Cell delay can be expressed by three parameters.

∑
nml

kji

kji
ijk vsca

,,

0=,,
***Delay = Delay(c,s,v) =

c : output capacitance
s : input slew
v : supply voltage

Path delay can be expressed by polynomial expression,
so we can obtain value of VDDmin by solving n-th 
degree inequality.
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Experimental Results

H.264/MPEG-4 Audio/Visual Codec LSI [2]

Module-wise DVFS technique 
was applied to "Audio Module".

90nm CMOS technology
Frequency : 180MHz/90MHz
Voltage:
  1.2V/0.9V (DVFS module)
  1.2V (non-DFVS module)
  2.5V (eDRAM)
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Timing Slack in DVFS module
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Adequate VDDmin value is 0.82V.

 Timing was analyzed with SPDM library for various supply voltage.



162006-1-26Asia and South Pacific Design Automation Conference

Power Dissipation of Codec LSI
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Conclusion
 Presented design methodology for module-wise DVFS.
 Explained clock design strategy to minimize clock skew 

between flip-flop in DVFS module and one in non-DFVS 
module.

 Showed effectiveness for reducing power through 
experimental results.

 If designers want to reduce power further more, design 
and circuit will become more complicated.

 To design such complicated LSI's, collaboration among 
circuit engineers, LSI engineers and methodology 
engineers has become more indispensable than ever.


