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Introduction
Dynamic Voltage and Frequency Scaling (DVFS):

ex. Intel Speedstep(R) technology
     Transmeta LongRunTM technology
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Module-wise DVFS

Clock

Module-1

Possibility of lowering supply voltage for Module-wise DVFS is larger 
than that of Chip-wise DVFS.

Module can work at lower frequency while supply voltage changes, by 
using Dynamic De-skewing System.
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Problem Definition

Constructing clock design strategy for minimizing clock 
skew.

Clarifying setup and hold timing constraints with clock 
skew taken into consideration.

            => Module-wise DVFS
                  with dynamic de-skewing system

Determining supply voltage value for lower clock 
frequency.

            => Module-wise DVFS, Chip-wise DVFS
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Clock Network of Dynamic De-skewing System
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Clock-delay changes in DVFS module, according to supply voltage.
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Delay Control Circuit (DCC)

Unit Delay
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Clock Design Strategy

ROOTCLK
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(1)Equalizing DELAYFmax and DELAYFhalf, by adding delay buffers appropriately.
(2)Generating clock tree structure by adding clock buffers to DVFS and 

non-DVFS modules.
LSB} LSA, DVFS,-non or DVFS in {F/FFjFi, for β< |DELAY - DELAY| FjFi ∈∀

skew clock maximum:β

Fi

under VDDA = VDDmax
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Clock Design Strategy (Cont.)
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(3)Equalizing DELAYRA and DELAYRB, by adding delay buffers appropriately.

DELAYRA

DELAYRB

(4)Adding or removing one delay buffer on return signal, to adjust total delay.

DELAYFmax

DELAYFhalf
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Timing Constraints

Setup and hold timing constraints can be expressed with 
three parameters for following two cases.

α

γ
β

: delay of minimum delay buffer
: maximum clock skew among flip-flops
: unit delay in Delay Control Circuit (DCC)

(I) VDDA = VDDmax, FA = Fmax
(II) VDDmin < VDDA < VDDmax, FA = Fhalf
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Scalable Polynomial Delay Model (SPDM)
Cell delay can be expressed by three parameters.

∑
nml

kji

kji
ijk vsca

,,

0=,,
***Delay = Delay(c,s,v) =

c : output capacitance
s : input slew
v : supply voltage

Path delay can be expressed by polynomial expression,
so we can obtain value of VDDmin by solving n-th 
degree inequality.
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Experimental Results

H.264/MPEG-4 Audio/Visual Codec LSI [2]

Module-wise DVFS technique 
was applied to "Audio Module".

90nm CMOS technology
Frequency : 180MHz/90MHz
Voltage:
  1.2V/0.9V (DVFS module)
  1.2V (non-DFVS module)
  2.5V (eDRAM)
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Timing Slack in DVFS module
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Adequate VDDmin value is 0.82V.

 Timing was analyzed with SPDM library for various supply voltage.
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Power Dissipation of Codec LSI
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Conclusion
 Presented design methodology for module-wise DVFS.
 Explained clock design strategy to minimize clock skew 

between flip-flop in DVFS module and one in non-DFVS 
module.

 Showed effectiveness for reducing power through 
experimental results.

 If designers want to reduce power further more, design 
and circuit will become more complicated.

 To design such complicated LSI's, collaboration among 
circuit engineers, LSI engineers and methodology 
engineers has become more indispensable than ever.


