Single-Chip Multi-Processor Integrating Quadruple 8-way VLIW Processors with interface timing analysis considering power supply noise

S Imai, A Inoue, M Matsumura, K Kawasaki, A Suga

Fujitsu Laboratories Ltd.
Outline

- Motivation
- Architecture
- Physical design
 - Design flow considering power supply noise
 - LSI model for power integrity analysis
 - Interface analysis example
- MPEG2 MP@HL decoding on evaluation board
- Summary
Motivation: high performance and low power

Performance

<table>
<thead>
<tr>
<th></th>
<th>Previous work: FR550</th>
<th>This work: FR1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelism</td>
<td>Data-level</td>
<td>Instruction-level</td>
</tr>
<tr>
<td></td>
<td>SIMD</td>
<td>VLIW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-thread</td>
</tr>
<tr>
<td></td>
<td>SDTV, etc.</td>
<td>HDTV, etc.</td>
</tr>
</tbody>
</table>

Thread-level
FR1000 chip specifications

<table>
<thead>
<tr>
<th>Core</th>
<th>4 cores with 8-way VLIW architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>32 KB+32 KB/core (D-cache, I-cache)</td>
</tr>
<tr>
<td></td>
<td>128 KB/core (Local memory)</td>
</tr>
<tr>
<td>DMA controller</td>
<td>16 ch (Internal), 16 ch (External)</td>
</tr>
<tr>
<td>Interface</td>
<td>Main memory 266 MHz 64 bit x 2 ch</td>
</tr>
<tr>
<td></td>
<td>System Bus 178 MHz 64 bit</td>
</tr>
<tr>
<td>Technology</td>
<td>90-nm CMOS, 9-metal layers</td>
</tr>
<tr>
<td>Transistor count</td>
<td>28M (Logic), 55M (Memory)</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>533 MHz @1.2 V</td>
</tr>
<tr>
<td>Power consumption</td>
<td>3.0 W @1.2 V, 533 MHz</td>
</tr>
<tr>
<td>Package</td>
<td>900-pin FCBGA</td>
</tr>
<tr>
<td>size</td>
<td>11.9 mm x 10.3mm</td>
</tr>
</tbody>
</table>

High speed interface cause power supply noise issue.
Power integrity issue on system board

Technology scaling

- signal I/O frequency
- signal I/O number

Increase of noise

FR1000: 230SSTL I/O buffers, 2ch 266MHz

Timing analysis considering power supply noise of DIE, PKG and PCB is required
Design flow considering power supply noise

Conventional flow

- FR1000 RTL
- Synthesis
- Timing budget
- netlist
- Layout and timing analysis
- FR1000 netlist

Additional flow

- PKG design
- PCB design
- DIE Layout Data
- PKG Layout Data
- PCB Layout Data

Power supply noise analysis model

Timing margin analysis considering power supply noise

Very long analysis time!

Timing margin
LSI power analysis model
Our timing margin analysis flow

Conventional flow
- **400K elements for FR1000 design**
- Power supply analysis model
- I/O stimulus
- Power supply noise analysis & delay penalty analysis
- Delay penalty
- Timing margin analysis
- Timing margin

Simulation time: 400 hours

Our new flow
- Power supply analysis model
- I/O stimulus
- Transmission line model
- Power supply noise analysis
- Delay penalty analysis
- Power supply voltage waveform
- Timing margin analysis
- Timing margin

Simulation time: 12 hours
Transmission line model

Apply the power supply voltage waveforms of DIE, PKG, and PCB.
Delay penalty by power supply noise analysis method

Driver side
- Power supply noise (External power supply)
- Drived signal
- Power supply noise (Ground)

Receiver side
- Received signal (without power supply noise)
- Received signal (with power supply noise)
- Propagation time (without power supply noise)
- Worst case delay penalty

\[\text{Worst case delay penalty} = \text{delay} - \text{delay} + \text{delay} \]
Analysis result of main memory interface

- Analysis conditions:
 - Process: slow
 - Voltage: VDE=2.3V, VDD=1.1V
 - Temperature: 125°
 - I/O: All active
 - Core logic: stop

- Results:
 - Clock-Address Setup: 28.9%
 - Clock-Address Hold: 26.0%
 - DQS-DQ Setup: 36.5%
 - DQS-DQ Hold: 36.6%
 - Clock-DQS Skew: 35.4%

- The margin without considering any delay penalty.
PCB/Package design guideline

DQ-DQS interface timing analysis result

Timing budget = 1.38 ns

tDS = 0.5 ns

On die variation
PKG/PCB skew
PKG/PCB Xtalk
Delay penalty by noise

Timing margin [ns]

0.5 1.0 1.5

PCB/Package design guideline

- Power
 Plane resource, Decoupling capacitors

- Signal
 Layer usage, Line width/length/spacing
MPEG2 MP@HL decode for HDTV on FR1000
Summary

The low power single-chip multi-processor FR1000

-4 processor cores, internal DMAC, external DMAC
-MPEG2 MP@HL without any dedicated circuits
-3.0W@1.2V, 533MHz

Introducing interface timing analysis considering power supply noise

-DIE(LSI) noise model development
-Timing analysis method at shorter times