
01/27/2006 ASP-DAC 2006 1

An SPU Reference Model for Simulation,
Random Test Generation and Verification

Yukio Watanabe, Balazs Sallay1, Brad Michael1,
Daniel Brokenshire1, Gavin Meil1, Hazim Shafi1, Daisuke Hiraoka2

Toshiba Corporation
1IBM
2Sony Computer Entertainment Inc.

01/27/2006 ASP-DAC 2006 2

Outline
 Overview of the Cell Broadband Engine and the

SPU
 SPU reference model
 Applications using the SPU reference model

 Simulator
 Random test case generator
 Verification environment

 Summary

01/27/2006 ASP-DAC 2006 3

The Cell Broadband Engine

SPE SPE SPE

SPE SPE SPE SPE

Memory
Flow

Controller

Synergistic
Processor

Unit
(SPU)

The
reference

model of this
SPU is the

target of this
presentation

R
am

bus X
D

R
A

M
TM Interface

M
em

ory C
ontroller

I/O
 C

ontroller

R
am

bus FlexIO
TM

 L2
(512KB)

Power
Processor
Element

Test &
 D

ebug Logic

Element Interconnect Bus

01/27/2006 ASP-DAC 2006 4

SPU --- Synergistic Processor Unit
 Brand new architecture for

multimedia applications
 Instruction Set Architecture (ISA)

was defined considering
 ISA efficiency for multimedia

applications
 Area efficiency
 Physical timing
 Power efficiency

01/27/2006 ASP-DAC 2006 5

SPU Functions
 Instruction execution

 Instructions are fetched from
the local storage and executed

 Load/Store instructions can
access only the local storage

 External transactions
 Channel I/F is used to

communicate with external
devices

 DMA transfers the data
between the local storage and
the external memory through
DMA I/F

Memory Flow Controller

SPU

Local
Storage

(instruction,
Data)

Register
File

Channel

Datapath
C

ontrol

Channel I/F DMA I/F

01/27/2006 ASP-DAC 2006 6

Outline
 Overview of the Cell Broadband Engine and the

SPU
 SPU reference model
 Applications using the SPU reference model

 Simulator
 Random test case generator
 Verification environment

 Summary

01/27/2006 ASP-DAC 2006 7

SPU Development Phases and How the
Reference Model was Used

ISA
Definition

Validation of the
ISA completeness

Micro
Architecture

Definition

RTL
Implementation

Software development

Performance
analysis

RTL verification

Instruction
Simulator

Pipeline
Simulator

Test case
generator

Physical
Implementation

Expected value
generator

SPU Development phase

Common Reference Model

Applications
that use the

reference model

Compiler development

01/27/2006 ASP-DAC 2006 8

SPU Reference Model Overview
 SPU reference model is a C library that executes

SPU instructions
 The SPU reference model is commonly used by

various applications
 Instruction/Pipeline/System level simulators
 Random test case generator
 On-the-fly expected value generator in the verification

environment
 ISA changes due to various feedback had to be

implemented only in the reference model

01/27/2006 ASP-DAC 2006 9

Reference Model Interface
 INTERPRETER_exec(APU_t *apu, unsigned int inst);

Pointer to the C structure entity
which represents all the SPU
architected memory/registers.

A 32bit instruction to be
executed in the SPU
reference model.

/* SPU Architected Memory/Register Resource Structure */
typedef struct apu_t {
 REG reg[128]; /*128b 128entry register file*/
 char memory[256*1024]; /*256KB local storage */
 int pc; /* Program counter */
 int spu_status; /* status register */

・

・
} APU_t;

01/27/2006 ASP-DAC 2006 10

SPU
Architected
Mem/Regs

Application program
that uses the SPU
reference model

APU_t

SPU Reference Model Structure

SPU Instruction Decoder

SPU reference model

INTERPRETER_inst_a(APU_t
*apu, unsigned int inst);

INTERPRETER_inst_absdb(APU_t
*apu, unsigned int inst);

INTERPRETER_inst_addx(APU_t
*apu, unsigned int inst);

INTERPRETER_inst_xswd(APU_t
*apu, unsigned int inst);

INTERPRETER_exec(
 APU_t *apu, unsigned int inst)

Read/modify

By splitting off the Mem/Regs structure from the reference
model, the reference model became simple and versatile.

01/27/2006 ASP-DAC 2006 11

Outline
 Overview of the Cell Broadband Engine and the

SPU
 SPU reference model
 Applications using the SPU reference model

 Simulator
 Random test case generator
 Verification environment

 Summary

01/27/2006 ASP-DAC 2006 12

Simulators Using the Reference Model
 Three kinds of simulators were implemented

 Instruction level
 ISA validation
 Software development as a fast simulator

 Cycle accurate pipeline level
 Performance analysis of the micro architecture
 Software/Compiler optimization

 System level including all the Cell Broadband Engine
elements such as PPE, SPU and Memory Flow
Controller

 System software development

01/27/2006 ASP-DAC 2006 13

Pipeline Level Simulator Implementation
 SPU program binary

image is generated by
assembler or C/C++
compiler.

 Binary image is loaded
into the SPU local
storage and PC is set.

 Simulation is executed
by user commands.

SPU
Reference

Model

SPU
Reference

Model

SPU
Architected

Memory

SPU
Architected

Memory

Inst. Issue
Model for pipeline

Loader

struct
stru

ct

SPU
Reference

Model

SPU
Reference

Model

.asm

SPU
Assembler

SPU
Assembler

coff

.asm

SPU
Assembler

SPU
Assembler

coff

SPU
Architected

Memory

SPU
Architected
Mem/Regs

Inst. issue
model for
pipeline

User Commands
- program load
- memory dump
- execution, etc…

User I/F
User Commands
- program load
- memory dump
- execution, etc…

User I/F

 Instruction fetch, branch prediction and issue control logics
are simulated and an instruction is executed only when the
instruction is committed.

Pointer to the
Mem/Regs struct

INTERPRETER_exec(…)

Loader

01/27/2006 ASP-DAC 2006 14

Simulation Result Example
command > pipeline
changed to pipeline simulator mode
command > run
result of sieve program
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103
107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211
223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587
593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709
719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853
857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991
997
STOPPED PC = 0xc0, SYSCALL_halt

HALT ... program finished successfully
instruction count: 80769

BREAKPOINT
Interpreter stopped at
000000c4:00000000(stop)

Running Eratosthenes'
sieve program

01/27/2006 ASP-DAC 2006 15

Simulation Result Example (cont.)
command > stat

Total Cycle count 372828
Total Instruction count 80769
Total CPI 4.62

Performance Cycle count 372828
Performance Instruction count 80769 (80769)
Performance CPI 4.62 (4.62)

Branch instructions 18103
Branch taken 9883
Branch not taken 8220

Hint instructions 0
Hint hit 0

Contention at LS between Load/Store and Prefetch 0

01/27/2006 ASP-DAC 2006 16

Simulation Result Example (cont.)

Single cycle 80769 (21.7%)
Dual cycle 0 (0.0%)
Nop cycle 0 (0.0%)
Stall due to branch miss 175079 (47.0%)
Stall due to prefetch miss 0 (0.0%)
Stall due to dependency 116971 (31.4%)
Stall due to fp resource conflict 0 (0.0%)
Stall due to waiting for hint target 0 (0.0%)
Stall due to dp pipeline 0 (0.0%)
Channel stall cycle 0 (0.0%)
SPU Initialization cycle 9 (0.0%)

Total cycle 372828 (100.0%)

01/27/2006 ASP-DAC 2006 17

SPU Verification Strategy
 Coverage driven verification

 Verification items that have to
be tested are described as
coverage events

 Random test cases are run in
the simulation to hit all the
coverage items

 Random instruction sequence
 Random external transactions

 During the simulation, checkers
check that the SPU logic is
working properly

 Coverage files are generated
as the result of simulations

SPU

Local

StorageRegister
File

Channel

Datapath C
ontrol

Channel I/F DMA I/F

Random
Instruction
sequence

C
heckers

Coverage
file

External Transaction DriverDriver
parameters

Random external transactions

01/27/2006 ASP-DAC 2006 18

Key Points in Coverage Driven Verification
 Good-quality random test cases

 Directed random test case generator is
necessary to hit coverage events of focus area

 Robustness of the verification environment
to run random test cases
 Instruction execution and external transactions

can interact each other
 Exceptional cases handling
 Recovery from error states

 Correct expected values must be generated
even with asynchronous interactions

01/27/2006 ASP-DAC 2006 19

Random Test Case Generator
 Genesys Pro (GPRO) which

is an IBM tool to generate
random test cases was
applied to SPU

 GPRO reads a rule definition
file (.def file) as an input and
generate a random
instruction sequence as .tst
file.

 Example of the rule
 Register dependencies on

previous instructions
 Massive load/store

instructions using same
address

SPU
R
eference
M

odel

SPU
R
eference
M

odel.def

.tst

Reference
m

odel API
for G

enesys
Pro

Reference
m

odel API
for G

enesys
Pro

G
enesys

Pro
Base Code

G
enesys

Pro
Base Code

SPU specific code
for Genesys Pro

SPU specific code
for Genesys Pro

SPU
Architected

Memory

SPU
Architected

Memory

INTERPRETER
_exec()

INTERPRETER
_exec()

Read/
modify
Read/
modify

TraceTrace

GPro API for
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

GPro API for
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

SPU
R
eference
M

odel

SPU
R
eference
M

odel.def

.tst

Reference
m

odel API
for G

enesys
Pro

Reference
m

odel API
for G

enesys
Pro

G
enesys

Pro
Base Code

G
enesys

Pro
Base Code

SPU specific code
for Genesys Pro

SPU specific code
for Genesys Pro

SPU
Architected

Memory

SPU
Architected

Memory

INTERPRETER
_exec()

INTERPRETER
_exec()

Read/
modify
Read/
modify

TraceTrace

GPro API for
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

GPRO API for
Mem/Reg access

Instruction execution
Read/Write trace
Undo operation

 Reference model is used to generate read/write trace information and to
check that the generated instruction sequence obeys the rule given as .def

01/27/2006 ASP-DAC 2006 20

Interaction between Instruction Execution and
External Transactions

Instruction sequence
xor $0, $0, $0 // $0<=0x0;
stqa $0, 0x00000 // LS[0x0]<=$0
 sequence 0

lqa $1, 0x00000 // $1<=LS[0x0]
brz $1, br_taken // go to br_taken if $1==0

br_not_taken:
 sequence 1

br_taken:
 sequence 2

 .

If there is no DMA transactions, sequence 2
is executed.

External transactions

DMA transfer to local storage
LS[0x0] <= Non zero value
 .

If there is a DMA transactions between the
stqa and lqa instructions, sequence 1 is
executed.
-> Instruction sequence is unpredictable

01/27/2006 ASP-DAC 2006 21

Interaction between Instruction Execution and
External Transactions : Solution

 SPU reference model is integrated in the verification environment
 Bus monitor synchronizes SPU architected memory/registers with

the logic when external transactions occur
 Instruction commit monitor checks if an instruction is committed in

the logic, and execute an instruction in the reference model

SPU logic

External bus driver

Reference
Model

API for GPRO

SPU
Architected
Mem/Regs

S
P

U
reference m

odel

C
ycle base sim

.

Instruction
commit
monitor

Test bench
Driver

parameters

Random
instruction
sequence
generated
by GPRO Checkers

Bus
monitor

Channel
 I/F

DMA I/F

01/27/2006 ASP-DAC 2006 22

Outline
 Overview of the Cell Broadband Engine and the

SPU
 SPU reference model
 Applications using the SPU reference model

 Simulator
 Random test case generator
 Verification environment

 Summary

01/27/2006 ASP-DAC 2006 23

Summary
 The reference model is used for

 Simulator
 ISA definition and validation
 Defining the micro architecture of the SPU by changing the

instruction execution latency
 Performance evaluation
 Software development and optimization
 Compiler development

 Random test case generator
 Good quality test case generation for coverage driven verification

 Expected value generator in the verification environment
 Since expected values can be generated on the fly, any

combination of random instruction sequence and random
external transactions can be simulated properly avoiding
unpredictability

01/27/2006 ASP-DAC 2006 24

Summary (cont.)
 The same reference model is used for each application

 Only the single code had to be maintained as the definition of
instructions.

 Reduced the burden to keep up with the ISA changes or bug fixes for
each application developer and reduced the likelihood of mistakes in
the implementation

 By including the reference model in the verification
environment, asynchronous external transactions are
treated properly and various corner cases are easily
covered and this improved the verification quality.
 Only one bug was found in the first silicon which was a mistake of

the specification of the asynchronous interrupt, though the SPU was
a novel processor.

01/27/2006 ASP-DAC 2006 25

The END

01/27/2006 ASP-DAC 2006 26

Supplementary Slides

01/27/2006 ASP-DAC 2006 27

Example of an Instruction Execution Routine

/* add word: a rt,ra,rb */
void INTERPRETER_inst_a(APU_t *apu, unsigned int inst)
{
 RTW(0) = RAW(0) + RBW(0);
 RTW(1) = RAW(1) + RBW(1);
 RTW(2) = RAW(2) + RBW(2);
 RTW(3) = RAW(3) + RBW(3);
}

#define RA(x) (((unsigned int)(x) >> 7) & 0x7f)
#define RAW(x) apu->reg[RA(inst)].word[(x)]

a rt,ra,rb

 0 0 0 1 1 0 0 0 0 0 0 rb ra rt
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31

bit0-bit31 bit32-bit63 bit64-bit95 bit96-bit127ra

bit0-bit31 bit32-bit63 bit64-bit95 bit96-bit127rb

bit0-bit31 bit32-bit63 bit64-bit95 bit96-bit127rt

+

→

+

→

+

→

+

→

01/27/2006 ASP-DAC 2006 28

Timing to Access the Reference Model

JJ k l m n o p q r

Instruction commit
Local store array access

Channel register access

Local store update by test bench
Channel register update by test bench
Instruction execution

Instruction
issue

Timing
of the logic

Timing of the
reference model
access

JJ k l m n o p q r

Instruction commit
Local store array access

Channel register access

Local store update by test bench
Channel register update by test bench
Instruction execution

Instruction
issue

JJ k l m n o p q r

Instruction commit
Local store array access

Channel register access

Local store update by test bench
Channel register update by test bench
Instruction execution

Instruction
issue

Timing
of the logic

Timing of the
reference model
access

 When an external transaction happens, a interface monitor detects it
and update the SPU architected memory/registers structure at ‘q’
pipeline stage.

 When a monitor detects an instruction commit in the logic at ‘n’ pipeline
stage, the instruction is executed in the reference model 3 cycle later at
the ‘q’ pipeline stage

 When the local storage contents are compared between logic and the
reference model, value at the ‘p’ stage of logic is compared with the
value of the ‘q’ stage of the reference model

01/27/2006 ASP-DAC 2006 29

Extension to Generate Trace Information
 The information which memory/register resources were read and

which memory/register resources were written when an
instruction was executed was required

 A C++ class was defined to access SPU memory/register
resources

 Macros were redefined to use the class
#define RAW(x) (SPU_Slice(refmodel, “V”, RA(inst), (x)<<5, ((x)<<5)+31))

 Trace information is automatically added by operator overloading
without changing reference model description

 RTW(0) = RAW(0) + RBW(0);

When SPU_Slice class is
accessed as an integer value,
read trace is added

When SPU_Slice class is
at the left side of ‘=‘, write
trace is added

01/27/2006 ASP-DAC 2006 30

Simulator performance

1.63M3.38MSample2
(Lots of fpu instructions)

1.83M16.83MSample1
(No fpu instructions)

Pipeline level
(cycles/sec)

Instruction level
(instructions/sec)

Platform : RHL3 with Opteron 248(2.2GHz)

