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Bit-width analysis is important!

RTL

High level synthesis

DSP application

Bit-width

Bit-width analysis 
guarantees the precision of 
computation results.

Bit-width analysis trades-offs 
precision with hardware 
resources, such as silicon area, 
power, etc.
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We focus on static bit-width analysis

precision 
verification

bit-width
analysis

detaile
d sim

ulatio
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our focus 
is on static 
analysis
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Simulation based analysis vs. Static analysis

Simulation based analysis
Monte-Carlo style simulation, iterative trial
Close to optimal bit-width results
Often huge searching space with full coverage of input 
vectors, thus running time inefficient

Static analysis
Infer bit-width for integer by value range propagation 
(forward, backward propagation)
Infer bit-width for fraction by precision analysis
Sub-optimal bit-width results
Much shorter running time and iteration reduced



Interval Arithmetic overestimates bit-width
Existing static bit-width analysis methods are IA based. 
What is Interval Arithmetic (IA)? 
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xAn uncertain variable        is expressed as 
min max[ , ]x x x=x

Take addition for an example:

min min max max[ , ]x y x yz x y + += + =

An Example

Program
b = a - a;

Where a is 16-bit long

Interval Expressions
b = [amin -amax,

amax + amax]

Results:
b is 17-bit long  

IA overestimates bit-width, enabling fairly pessimistic results.
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Affine Arithmetic estimates bit-width better
What is Affine Arithmetic (AA)

0 1 1 2 2ˆ n nx x x x xε ε ε= + + + ⋅⋅⋅ +
x

An uncertain variable        is expressed as x
0 1 1 2 2ˆ , 1 1n n ix x x x xε ε ε ε= + + + ⋅⋅⋅ + − ≤ ≤

central value coefficient noise symbol

Previous Example

Program
b = a - a;

a is 16-bit long

Affine Expressions

Results:
b is 1-bit long  

0 1a = a  + a  aε
0 1 0 1b = (a  + a )-(a  + a ); a aε ε

0;=

AA models correlation between variables, enables tighter range 
propagation through cancelling some uncertainties along data-path.
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We extend AA for bit-width analysis
Fang et. al. (CMU) have introduced AA model into the 
verification of the finite-precision effects in DSP applications.  
Detailed mathematical reasoning has been explained in [1] [2]. 
We extend AA model for bit-width analysis.

[1]        C. F. Fang, R. A. Rutenbar, M.Puschel and T. Chen, “Towards efficient static analysis of 
finite precision effects in DSP applications via affine arithmetic modeling,” in 
Proceedings of 40th Design Automation Conference, pp.496 – 501, 2003.

[2]        C. F. Fang, R. A. Rutenbar, M. Puschel and T. Chen, “Fast, accurate static analysis for 
fixed-point finite-precision effects in DSP designs,” in Proceedings of the International 
Conference on Computer Aided Design (ICCAD’03), pp.275- 282, San Jose, California, 
USA, 2003.

bit-width precision
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Closely related work

A similar research was conducted by Dr. Lee [3] (imperial 
college). They applied AA together with the adaptive 
simulated annealing algorithm to find the optimal fractional 
bits.

[3]  D-U. Lee, A. A. Gaffar, O. Mencer, W. Luk, “MiniBit: Bit-width optimization via affine 
arithmetic,” in Proceedings of the 42nd annual conference on Design automation, June, 
2005.



11

Outline

Introduction

AA Bit-width analysis methodology

Experimental results and verification

Summary & Conclusions



12

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
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Hard error 
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N

Y
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User interface for MISO system
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Range analysis
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N
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Traverse the whole 
program from entry 
to exit in forward 
direction
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Variable expression

Assume that there are totally N floating-point variables whose 
upper quantization error bounds are expressed as     

When they are transformed to fixed-point, the actual 
quantization errors incurred at each of them are expressed in 
affine forms as

The intermediate and output variable is expressed as

1 2 3, , N∆ ∆ ∆ ⋅ ⋅ ⋅ ∆

1 1 2 2 3 3, , , N Nε ε ε ε∆ ∆ ∆ ⋅ ⋅ ⋅ ∆

1 1 1 2 2 2 3 3 3 N N NVariable Const Variable Const A A A Aε ε ε ε= +∆ = + ∆ + ∆ + ∆ +⋅⋅⋅+ ∆

error termcentral value
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Hard error analysis
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The designer-specified output error tolerance Espec sets the upper 
bound of output∆

1 1 1 2 2 2 3 3 3 N N N outputA A A A Especε ε ε ε∆ + ∆ + ∆ +⋅⋅⋅+ ∆ = ∆ ≤

To fully insures the output error not to exceed the designer-
specified error tolerance, we take the extreme scenario, i.e.,

1 2 3 1Nε ε ε ε= = = ⋅⋅⋅ = = Therefore, we have

1 1 2 2 3 3 N NA A A A Espec∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ ≤

Assign non-negative weights to each term of the equation, 

1

N

i i i
i

W A Espec
=

∆ =∑

1
1

N

i
i

W
=

=∑
In our research, we assign each term with same weights 1/iW N=
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Probabilistic error analysis
In most of the DSP designs, the designer allows certain degree of error 
rate, which enables a larger bit-width-to-error tradeoff than using hard 
error analysis. Our probabilistic error analysis almost insures that the 
probability for the output error to lie in the specified error tolerance is 
higher than the designer specified parameter λ

1 1 1 2 2 2 3 3 3 N N N outputA A A A Especε ε ε ε∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ = ∆ ≤

Let i i i i i iA A A k∆ = ∆ = ⋅⋅⋅ = ∆ = , 
the equations depicts a sum of many statistically independent and 
identical distributed terms. By the central limit theorem, the equation 
approaches a Gaussian CDF.

(0,1)output

N Variance

∆
→ Ν

2 2/ 3 ( ) / 3i iVariance k A= = ∆

( )output specprob E λ∆ ≤ ≥

i∆ if
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Experimental Results
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A butterfly part in IDCT

In probabilistic error analysis, the probability 0.999.
1 [ 128,127]X ∈ − 2 [ 128,127]X ∈ −

λ =
2YError tolerance at is 1.0

X1

X2
Adder1

Const1

Adder2

Sub1

Const2

Y1

Y2Mult1

-1

Node X1 X2 Adder1 Const1 Mult1 Sub1 Const2 Y2

IA 8 8 9 1 9 10 1 9
AA 8 8 9 1 9 8 1 8
IA 8 8 8 8 8 8 8 8
Hard 0 3 3 9 3 3 8 3
Prob. 0 2 2 10 2 2 9 2

Fractional

Integer
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Experimental Results (Continued)

Bit-width is normalized with respect to the IA based fractional 
bit-width.
Hard error analysis more than 30% fractional bit-width 
reduction
Probabilistic error analysis 50% reduction
Tradeoff goes up as the relaxing the probabilistic restriction
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Result Verification
For the hard error analysis, whether the maximum output error 
lies within the specified tolerance after implementation?
For the probabilistic error analysis, whether the probability for the 
output to lie in the specified error tolerance can be higher than 
the specified probability parameter?

Program in high level language C

Linking with SystemC library

Random 
input

Output I Output II

Bit-width

Fixed-point quantization: 
real rounding
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Benchmark Bit-width
Analysis
Method 

Simulated 
output error 

Specified 
Probability

Simulated
Probability 

IA based 0.02 N.A. 1

IA based 0.09 N.A. 1
0.15 N.A. 1

IA based 0.88 N.A. 1
0.93 N.A. 1

AA based
4th order 
polynomial

AA based 0.58 0.99 1
FIR filter

0.22 N.A. 1
Example I

0.47 0.99 1AA based
0.33 0.999 1

0.58 0.999 1

1.10 0.99 0.999
0.95 0.999 1

Result Comparison and Analysis
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Summary & Conclusions
An automated and efficient static bit-width analysis 
methodology based on AA model is presented.
The proposed probabilistic error analysis can further shorten 
the bit-width and explore a larger bit-width-to-error tradeoff.

Limitations:
Our method lies in algorithm level which does not consider the 
hardware cost function.
We use Gaussian approximation during analysis, theoretically 
it is difficult to fully guarantee the error probability to be 
bounded. Therefore, we suggest that the specified probability 
should be flexibly restricted.
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Thank you!
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