
An Automated, Efficient and Static Bit-
width Optimization Methodology

Towards Maximum Bit-width-to-Error
Tradeoff with Affine Arithmetic Model

Yu Pu 1,2

Pu_Yu@nus.edu.sg

Yajun Ha 1
elehy@nus.edu.sg

National University of Singapore1

Technische Universiteit Eindhoven2

2

Outline

Introduction

AA Bit-width analysis methodology

Experimental results and verification

Summary & Conclusions

3

Outline

Introduction

AA Bit-width analysis methodology

Experimental results and verification

Summary & Conclusions

4

Bit-width analysis is important!

RTL

High level synthesis

DSP application

Bit-width

Bit-width analysis
guarantees the precision of
computation results.

Bit-width analysis trades-offs
precision with hardware
resources, such as silicon area,
power, etc.

5

We focus on static bit-width analysis

precision
verification

bit-width
analysis

detaile
d sim

ulatio
n

our focus
is on static
analysis

6

Simulation based analysis vs. Static analysis

Simulation based analysis
Monte-Carlo style simulation, iterative trial
Close to optimal bit-width results
Often huge searching space with full coverage of input
vectors, thus running time inefficient

Static analysis
Infer bit-width for integer by value range propagation
(forward, backward propagation)
Infer bit-width for fraction by precision analysis
Sub-optimal bit-width results
Much shorter running time and iteration reduced

Interval Arithmetic overestimates bit-width
Existing static bit-width analysis methods are IA based.
What is Interval Arithmetic (IA)?

7

xAn uncertain variable is expressed as
min max[,]x x x=x

Take addition for an example:

min min max max[,]x y x yz x y + += + =

An Example

Program
b = a - a;

Where a is 16-bit long

Interval Expressions
b = [amin -amax,

amax + amax]

Results:
b is 17-bit long

IA overestimates bit-width, enabling fairly pessimistic results.

8

Affine Arithmetic estimates bit-width better
What is Affine Arithmetic (AA)

0 1 1 2 2ˆ n nx x x x xε ε ε= + + + ⋅⋅⋅ +
x

An uncertain variable is expressed as x
0 1 1 2 2ˆ , 1 1n n ix x x x xε ε ε ε= + + + ⋅⋅⋅ + − ≤ ≤

central value coefficient noise symbol

Previous Example

Program
b = a - a;

a is 16-bit long

Affine Expressions

Results:
b is 1-bit long

0 1a = a + a aε
0 1 0 1b = (a + a)-(a + a); a aε ε

0;=

AA models correlation between variables, enables tighter range
propagation through cancelling some uncertainties along data-path.

9

We extend AA for bit-width analysis
Fang et. al. (CMU) have introduced AA model into the
verification of the finite-precision effects in DSP applications.
Detailed mathematical reasoning has been explained in [1] [2].
We extend AA model for bit-width analysis.

[1] C. F. Fang, R. A. Rutenbar, M.Puschel and T. Chen, “Towards efficient static analysis of
finite precision effects in DSP applications via affine arithmetic modeling,” in
Proceedings of 40th Design Automation Conference, pp.496 – 501, 2003.

[2] C. F. Fang, R. A. Rutenbar, M. Puschel and T. Chen, “Fast, accurate static analysis for
fixed-point finite-precision effects in DSP designs,” in Proceedings of the International
Conference on Computer Aided Design (ICCAD’03), pp.275- 282, San Jose, California,
USA, 2003.

bit-width precision

10

Closely related work

A similar research was conducted by Dr. Lee [3] (imperial
college). They applied AA together with the adaptive
simulated annealing algorithm to find the optimal fractional
bits.

[3] D-U. Lee, A. A. Gaffar, O. Mencer, W. Luk, “MiniBit: Bit-width optimization via affine
arithmetic,” in Proceedings of the 42nd annual conference on Design automation, June,
2005.

11

Outline

Introduction

AA Bit-width analysis methodology

Experimental results and verification

Summary & Conclusions

12

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

N

Y

13

User interface for MISO system

14

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

Convert input variables
from IA form to AA form,
introduce noise symbols

N

Y

15

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

N

Y

Traverse the whole
program from entry
to exit in forward
direction

16

Variable expression

Assume that there are totally N floating-point variables whose
upper quantization error bounds are expressed as

When they are transformed to fixed-point, the actual
quantization errors incurred at each of them are expressed in
affine forms as

The intermediate and output variable is expressed as

1 2 3, , N∆ ∆ ∆ ⋅ ⋅ ⋅ ∆

1 1 2 2 3 3, , , N Nε ε ε ε∆ ∆ ∆ ⋅ ⋅ ⋅ ∆

1 1 1 2 2 2 3 3 3 N N NVariable Const Variable Const A A A Aε ε ε ε= +∆ = + ∆ + ∆ + ∆ +⋅⋅⋅+ ∆

error termcentral value

17

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

N

Y

18

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

N

Y

19

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

N

Y

Hard error analysis

20

The designer-specified output error tolerance Espec sets the upper
bound of output∆

1 1 1 2 2 2 3 3 3 N N N outputA A A A Especε ε ε ε∆ + ∆ + ∆ +⋅⋅⋅+ ∆ = ∆ ≤

To fully insures the output error not to exceed the designer-
specified error tolerance, we take the extreme scenario, i.e.,

1 2 3 1Nε ε ε ε= = = ⋅⋅⋅ = = Therefore, we have

1 1 2 2 3 3 N NA A A A Espec∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ ≤

Assign non-negative weights to each term of the equation,

1

N

i i i
i

W A Espec
=

∆ =∑

1
1

N

i
i

W
=

=∑
In our research, we assign each term with same weights 1/iW N=

21

Methodology overview
User interface

IA to AA

“Symbolically” forward propagation

Range analysis
Probabilistic
error analysis

Integer
bit-width

Probabilistic error analysis

Fractional
bit-width

Hard error
analysis

N

Y

22

Probabilistic error analysis
In most of the DSP designs, the designer allows certain degree of error
rate, which enables a larger bit-width-to-error tradeoff than using hard
error analysis. Our probabilistic error analysis almost insures that the
probability for the output error to lie in the specified error tolerance is
higher than the designer specified parameter λ

1 1 1 2 2 2 3 3 3 N N N outputA A A A Especε ε ε ε∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ = ∆ ≤

Let i i i i i iA A A k∆ = ∆ = ⋅⋅⋅ = ∆ = ,
the equations depicts a sum of many statistically independent and
identical distributed terms. By the central limit theorem, the equation
approaches a Gaussian CDF.

(0,1)output

N Variance

∆
→ Ν

2 2/ 3 () / 3i iVariance k A= = ∆

()output specprob E λ∆ ≤ ≥

i∆ if

23

Outline

Introduction

Motivation

AA Bit-width analysis methodology

Experimental results and verification

Summary & Conclusions

Experimental Results

24

A butterfly part in IDCT

In probabilistic error analysis, the probability 0.999.
1 [128,127]X ∈ − 2 [128,127]X ∈ −

λ =
2YError tolerance at is 1.0

X1

X2
Adder1

Const1

Adder2

Sub1

Const2

Y1

Y2Mult1

-1

Node X1 X2 Adder1 Const1 Mult1 Sub1 Const2 Y2

IA 8 8 9 1 9 10 1 9
AA 8 8 9 1 9 8 1 8
IA 8 8 8 8 8 8 8 8
Hard 0 3 3 9 3 3 8 3
Prob. 0 2 2 10 2 2 9 2

Fractional

Integer

25

Experimental Results (Continued)

Bit-width is normalized with respect to the IA based fractional
bit-width.
Hard error analysis more than 30% fractional bit-width
reduction
Probabilistic error analysis 50% reduction
Tradeoff goes up as the relaxing the probabilistic restriction

26

Result Verification
For the hard error analysis, whether the maximum output error
lies within the specified tolerance after implementation?
For the probabilistic error analysis, whether the probability for the
output to lie in the specified error tolerance can be higher than
the specified probability parameter?

Program in high level language C

Linking with SystemC library

Random
input

Output I Output II

Bit-width

Fixed-point quantization:
real rounding

27

Benchmark Bit-width
Analysis
Method

Simulated
output error

Specified
Probability

Simulated
Probability

IA based 0.02 N.A. 1

IA based 0.09 N.A. 1
0.15 N.A. 1

IA based 0.88 N.A. 1
0.93 N.A. 1

AA based
4th order
polynomial

AA based 0.58 0.99 1
FIR filter

0.22 N.A. 1
Example I

0.47 0.99 1AA based
0.33 0.999 1

0.58 0.999 1

1.10 0.99 0.999
0.95 0.999 1

Result Comparison and Analysis

28

Outline

Introduction

Motivation

AA Bit-width analysis methodology

Experimental results and verification

Summary & Conclusions

29

Summary & Conclusions
An automated and efficient static bit-width analysis
methodology based on AA model is presented.
The proposed probabilistic error analysis can further shorten
the bit-width and explore a larger bit-width-to-error tradeoff.

Limitations:
Our method lies in algorithm level which does not consider the
hardware cost function.
We use Gaussian approximation during analysis, theoretically
it is difficult to fully guarantee the error probability to be
bounded. Therefore, we suggest that the specified probability
should be flexibly restricted.

30

Thank you!

	An Automated, Efficient and Static Bit-width Optimization Methodology Towards Maximum Bit-width-to-Error Tradeoff with Affine
	Outline
	Outline
	Bit-width analysis is important!
	We focus on static bit-width analysis
	Simulation based analysis vs. Static analysis
	Interval Arithmetic overestimates bit-width
	Affine Arithmetic estimates bit-width better
	We extend AA for bit-width analysis
	Closely related work
	Outline
	Methodology overview
	User interface for MISO system
	Methodology overview
	Methodology overview
	Variable expression
	Methodology overview
	Methodology overview
	Methodology overview
	Hard error analysis
	Methodology overview
	Probabilistic error analysis
	Outline
	Experimental Results
	Experimental Results (Continued)
	Result Verification
	Outline
	Summary & Conclusions
	Thank you!

