An Exact Algorithm for the Statistical Shortest Path Problem

Liang Deng and Martin D. F. Wong
Dept. of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Outline

- Motivation
- Statistical shortest path (SSP) problem
- Our exact algorithm for SSP problem
- Applications
 - Maze Routing
 - Timing Analysis
 - Buffer Insertion
Why Statistical Methods?

- Intra-die variations become dominant
- Corner-based design flow leads to over design or yield loss
- Statistical methods are needed not only in simulation but also in design tools.

Temperature Variation in Cell Processor
Dac C. Pham, et al. ISSCC05
Variations, Performance and Yield

- Variation sources
 - Process variations
 - Gate length variation
 - Geometric variation in interconnection wires
 - Temperature variations
 - Supply voltage variations
- Statistical models for circuits have been proposed
- New algorithm considering variations are needed for performance/yield optimization
Statistical Model for Variations

- Use mean μ and variance σ^2 to capture the random property of variations
- Exact for Gaussian, uniform, binominal, exponential distributions and etc.
- Good approximation for arbitrary random variables
Mean and variance are additive, but not the standard deviation σ

Recall the Chebyshev’s Inequality:

$$P(|X - \mu| \leq k\sigma) > 1 - \frac{1}{k^2}$$

The cost function $\mu + k\sigma$ is important to yield optimization

σ not additive presents difficulties in solving statistical graph problems
Statistical Shortest Path Problem

- Edge weights are random variables
- To find a path with minimum $\mu + \Phi(\sigma^2)$ value
- Existing methods cannot solve this problem

Edge weight: (mean, variance)
From Deterministic to Statistical

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge weight w</td>
<td>Edge weight (μ, σ^2)</td>
</tr>
<tr>
<td>w is additive</td>
<td>μ, σ^2 are additive</td>
</tr>
<tr>
<td>Path weight Σw</td>
<td>Path weight (μ_p, σ_p^2)</td>
</tr>
<tr>
<td>Minimize Σw</td>
<td>Minimize $\mu_p + \Phi(\sigma_p^2)$</td>
</tr>
</tbody>
</table>
Statistical Shortest Path Problem

- Given a directed graph G
 - Not necessarily a DAG
- Find a path p from source vertex s to sink vertex t such that
 - $\mu_p + \Phi(\sigma_p^2)$ is minimized
 - Path weight of p is a random variable with mean μ_p and variance σ_p^2
Practical Observations for EDA problems

- μ, σ^2 are additive
- For yield optimization problems
 - σ^2 is bounded
 - σ^2 can be discretized without introducing much error
- We may assume the variance σ^2 of path weight are integers upper bounded by B, i.e., $\sigma^2 \leq B$
Algorithm for Solving SSP Problem

- Vertex splitting for μ, σ^2
- Graph expansion to generate a new graph G'
- G' has real numbers as its edge weights
- Each vertex u in G is split into a set of vertices in G': $\{u_1, u_2, \ldots, u_B\}$
Graph Expansion – Source Node

- From source to other vertices
- Only expand vertex a
- Each new vertex a_i corresponds to a with variance i
- Edge weight is μ
Graph Expansion – Internal Nodes

- Assuming vertex u is already split
- Its neighbor v will be also split
- Edges are connected according to σ^2 of path weight
- Edge weight are μ
Graph Expansion – Sink Node

- Original sink node is already split according to previous steps
- Add a super sink node t'
- Edge weight for edge ti to t' is $\Phi(i)$
- Note that any path from source to ti has variance equals to i
From Arbitrary Graph to DAG

- There will be no loop in expanded graph since $\sigma^2 > 0$
SSP Algorithm

- The expanded graph G' is a DAG
- Shortest path in G' can be found by existing deterministic shortest path algorithms for DAG
- This path corresponds to a path in G that minimizes $\mu_p + \Phi(\sigma_p^2)$
- Time complexity is $O(B(V+E))$
Improvement

- Only split a vertex whenever it is necessary; don’t split all vertices
- Remove redundant vertices during splitting
 - If paths have same variance, then the one with larger mean is redundant
 - If $\Phi(\sigma_p^2)$ is a monotonically increasing function, paths with larger mean and variance are redundant
Example

Edge weight: (mean, variance)

\[\Phi(x) = 3\sqrt{x} \]
SSP Algorithm Improved

- Much less vertices are generated
 - 100 vertices needed for previous example with original approach
 - 10 vertices used with improved algorithm
- Expand graph simultaneously with searching the shortest path
- Much faster with less memory requirement
EDA applications

- Maze Routing
- Timing Analysis
- Buffer Insertion
Maze Routing

- Timing-driven maze routing
- Process Variations
 - Systematic variations
 - Random variations
 - Temperature variations
- Find the shortest path to improve the performance
Maze Routing

No Variations considered

Variations considered
Timing Analysis

- Find the longest delay path considering intra-die variations
- Large circuits with several logic levels
 - Gaussian distribution for the path delay
 - $\mu_p + 3\sigma_p$ is used to measure the timing-yield
- Our algorithm can also find the (path) candidates with longest delay
Timing Analysis

- ISCAS benchmarks
- Cell delays are not necessarily Gaussian
- 40X—1000X runtime improvement over Monte Carlo simulation
- Very little error compare to Monte Carlo method
Buffer Insertion

- Buffer insertion in 2-pin net can be formulated into shortest path problem
- With variations from both devices and interconnections, it should be formulated into statistical shortest path problem
- Our algorithm can solve this buffer insertion with variations consideration
Buffer Insertion

- Graph based approach
- Formulated as a shortest path problem
Conclusion

- Exact algorithm to solve the statistical shortest path problem
- Arbitrary graph, arbitrary cost function Φ
- Efficient implementation
- Can be used in varieties of applications in nanometer design