Fast and Accurate OPC for Standard-Cell Layouts

David M. Pawlowski, Liang Deng, Martin D. F. Wong
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Lithography and Technology Scaling

As feature sizes shrink, chipmaking woes grow

Optical litho can exist only with CAD-based correction tools

Source: Mentor Graphics Corp.
Lithography and Design

- Sub-wavelength lithography: 193nm light is used in 65nm and 45nm nodes, and will be used in 32nm technology nodes!
- Resolution enhancement techniques (RET) (e.g., OPC, PSM, OAI) are the key enabling technology
- Design tools should “plan” for RETs
- Requires new methodologies and algorithms
Lithography and Variations

- Lithography – a main source of process variations

- Gate length variation will change the delay, threshold voltage, and leakage ...

- This issue will only become more critical in future technology nodes

Ke Cao and etc. DAC06
Optical Proximity Correction (OPC)

- Manipulate mask geometry to compensate for image distortions
- Model-based OPC are required for 65nm node and beyond

Original Layout

Without OPC

With OPC

Mask

Image on silicon wafer
Manufacturing Cost

- **Skyrocketing Mask Cost**
 - Long OPC runtime
 - Exponentially increased features on the mask

- **More design/fabrication loop needed**
 - Less design can work right after the first tape-out
 - Mask set respin required
 - Manufacturing cost may be doubled or even tripled

Source: EETime
Standard Cell and OPC

- Standard cell based designs accept full-chip OPC

- Even for the same cell after full-chip OPC
 - Different environments
 - Different OPC solutions
 - Different print errors
 - Different characterizations
Cellwise OPC Methodology

- Problems with full-chip OPC
 - Large storage requirement (due to numerous complex geometries representing the corrections)
 - Long computation time (e.g., days of OPC computations on computers running in parallel)
 - Simulation models do not account for all possible printing variations → unexpected imaging failures

- We propose a cellwise OPC methodology to fix all these problems for standard-cell design
OPC for a Cell Depends on its Neighbors

- The buffer cell sees very different optical influence from different neighboring cells
- Center features almost remain the same
- Boundary features vary a lot due to the different environment
- A boundary-based cellwise OPC approach is required for future technologies
Boundary-Based Cellwise OPC

- Pre-compute and store the corrected cell layouts
- Each cell has multiple versions of OPC corrections obtained in the presence of representative environments (modeling optical influence from neighboring cells)
- In full chip layout, OPC is done cellwise where each cell uses a pre-computed correction based on its neighboring environment
- **Challenges**: How to design small number of OPC versions and yet have high-degree of accuracy?
Representative Features

- Radius of influence (ROI) is typically <1000nm in current lithography system
- Limiting boundary of standard cell helps cellwise OPC
- The outmost two column can be representative features for the cell

The aerial images outside a NOR logic gate (metal1 features)
Boundary-Based Cellwise OPC

- Center features accept cellwise OPC without boundaries
- Left and Right boundaries have OPC solutions according to its neighboring environments
 - Two columns of features for cell boundary
 - Two columns of features for neighboring environment
- Top and Bottom Environment can be ignored
Top and Bottom Representative Features

- Top and bottom representative feature can be ignored
- Relatively smaller optical influence on vertical direction than horizontal direction
- Power and ground tracks make the features further apart
Simulation Results

One Metal feature after OPC

<table>
<thead>
<tr>
<th>D</th>
<th>10nm</th>
<th>200nm</th>
<th>400nm</th>
<th>600nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_V</td>
<td>0.298</td>
<td>7.0e-3</td>
<td>2.8e-4</td>
<td>1.7e-5</td>
</tr>
<tr>
<td>I_H</td>
<td>0.300</td>
<td>1.8e-3</td>
<td>1.6e-3</td>
<td>3.4e-4</td>
</tr>
</tbody>
</table>

D is the simulation point from the feature edge

Maximum EPE Simulation

EPE Simulation with row shifting
Number of Representative Features

- Two columns of features as representative environment
- Environment NMOS and PMOS layout can be separated
- Features in the most adjacent column are directly from cell boundaries
- Features in the second column are either full or empty for representative purpose
- The number of total representative environments are limited due to the nature of standard cell layout
Incremental OPC for Cell Boundary

- OPC is performed on each cell with no boundaries to obtain the center part OPC solution.

- Column by column OPC is performed on cell boundaries with representative environments.
Special Cases (Narrow Cells)

- Some cells have smaller width
 - INV, BUF cells have only 2-3 columns of Metal1 features
- Only one column as the cell boundary
 - Other approaches are also tested
 - This technique achieved the best accuracy
- The cellwise OPC procedure remain the same
Full-chip OPC Solution by Table-Look-Up

- Full-chip OPC can be done right after placement
- Center Part of OPC solution is decided by the cell
- OPC for boundaries are decided by the cell and its environments
- All done by simple table-look-up!
Advantages of Cellwise OPC

- More accurate than full-chip OPC (since it is a one-time-only computation so we can use long CPU time)
- Accuracy of simulation models can be completely verified (on silicon)
- Predictable timing (since the delay of each OPC version of a cell can be pre-determined)
Full-chip Simulation Results

- EPE simulation results for Metal1 layer
- Average EPE (edge placement error) – 0.731nm
- <1% of the metal1 feature width 80nm
- 4.67nm average EPE without boundary-based method
Full-chip simulation results

- EPE simulation results for Poly layer
 - Average EPE - 1.59nm, Average maxEPE - 4.83
 - 3.5% of the poly feature width 45nm
 - Average EPE - 1.96nm, Average maxEPE - 14.23 without boundary-based method

![Average EPE distribution for 100 layouts](image1)

![EPE distribution for sample points in one layout](image2)
Conclusions

- A promising OPC methodology for future technology nodes
 - Currently for 45nm and will be extended to 32nm and 22nm nodes

- Many benefits
 - Significantly reduced full-chip OPC runtime
 - Smaller storage requirement
 - Improved OPC accuracy
 - More predictable cell characterization