Coupling-Aware Dummy Metal Insertion for Lithography

L. Deng (1), M.D.F. Wong (1), K. Chao (2), H. Xiang (3)

(1) University of Illinois at Urbana-Champaign
(2) Intel, Hillsboro, OR
(3) IBM T.J. Watson Research, Yorktown Heights, NY
Technology Scaling and Lithography

- Lithography system with 193nm wavelength will be used for future technology nodes.
- The gap between feature size and wavelength increases.
- Metal layer will have issues for future nodes as Poly layer have now...
Resolution Enhancement Technology

- Optical Proximity Correction (OPC)
- Phase Shift Mask (PSM)
- Off-Axis Illumination (OAI) is widely used
 - Enhanced slope
 - Smaller edge placement error (EPE)
Off-Axis Illumination (OAI)

• Pros
 – Little lithography/mask cost overhead compared to OPC or PSM
 – Good printability for dense features

• Cons
 – Complicated design rules
 – High printing errors for isolated features with defocus
 – Difficult “Forbidden Pitch” problem
Dummy Metals Improve Printability

- With OAI, some features can’t be printed correctly even after OPC
- Obtain layout uniformly by inserting dummy metals
- Dummy metal insertion improves printability
Dummy Metals Add Coupling Capacitance

- Dummy metal insertion introduces additional metals on wafer
- Coupling capacitance is increased
- May degrade circuit performance

Printed image simulation from Calibre™ after dummy insertion
Two Types of Dummy for Lithography

- **Printable Assist Feature (PAF)**
 - Same width as metal wires
 - Leaves metals on wafer
 - Higher coupling capacitance
 - Better printability

- **Sub-Resolution Assist Feature (SRAF)**
 - Small enough not to be printed
 - Several parallel SRAFs are needed to act as one PAF
 - Lower coupling capacitance
 - Less improvement on printability
Litho Cost and Coupling Cost

• Lithography cost
 – Complexity of assist features (PAF < SRAF)
 – Printability (EPE) (PAF < SRAF)
 – Reduce lithography cost ↔ Use more PAFs

• Coupling Cost
 – PAFs add coupling capacitance
 – SRAFs has no coupling overhead
 – Reduce coupling cost ↔ Use less PAFs
Coupling-Aware Dummy Insertion

• Trade off between coupling cost and lithography cost

• Compared to inserting PAF everywhere
 - Solution I: 30% less coupling
 - Solution II: 46% less coupling with 5% less SRAFs

• Insert PAFs and SRAFs to minimize lithography cost subject to coupling cost bound
Coupling-Aware Dummy Insertion

• Given a layout with metal wires routed, find a dummy metal insertion solution (using PAFs and SRAFs) that minimizes the total amount of PAFs inserted such that total coupling capacitance is less than a given bound

• We have designed an efficient algorithm to solve this problem optimally
Coupling Capacitance Model

\[C_X = C_0 \frac{x}{S^\alpha} \]

- **Coupling Capacitance Model**
- Diagram showing wires and dummy connected to the substrate with capacitances labeled as \(C_X \) and \(C_0 \).
- Formula for coupling capacitance: \(C_X = C_0 \frac{x}{S^\alpha} \)

\(\alpha \) and \(S \) are variables in the equation.
Post-Routing Partitioning

- Layout is partitioned into regions
- Each region has only top and bottom metal features
- Dummies will be inserted into the white spaces in the region
- PAFs and SRAFs give different coupling and lithography cost

\[C_x = C_0 \frac{x}{S^\alpha} \]
Coupling-Lithography-Cost (CLC) Ratio

- Coupling-lithography-cost (CLC) ratio = *Increase in coupling capacitance per unit increase in PAFs*
- Dummy insertion with smaller CLC ratio is preferred

Introduce new coupling capacitances for both side

Introduce new coupling capacitances on one side and block some old coupling capacitance
Basic Algorithm

- **Goal**: Insert maximum PAFs to keep coupling capacitance within given bound
- A simple greedy algorithm
 1. Insert unit length PAF at a location which has minimum CLC ratio
 2. Update CLC ratios for all insertion locations
 3. Repeat Step 1 until coupling capacitance bound is violated
- A much faster implementation is possible
Improved Algorithm

• Pick a region with minimum CLC ratio
• Insert a suitable number of tracks of PAFs into the selected region
• New regions formed and optimal insertion of PAFs is iteratively performed on the regions to minimize CLC ratio
• Algorithm stops when no more slack on coupling capacitance constraint
Dummy Insertion for One Region

- PAFs are inserted on tracks
- PAFs are inserted into the middle tracks first
- If coupling constraint is not reached, insert PAFs to fill all these tracks
- One region is divided by the inserted PAFs into two half regions
Dummy Insertion for Half Region

- Minimum CLC is achieved by inserting PAFs on the track nearest to the bottom
- If this track is filled, new half region with new minimum CLC will be formed
Optimal Dummy Insertion for a Region

• Given a region with \(m \) tracks
• Inserting \(p \) tracks of PAFs with identical length will minimize the CLC ratio
• \(p \) is a function of \(m \)

\[
p \approx \left(\frac{\alpha}{(m + \beta)^{-\alpha} + (k + \beta)^{-\alpha}} \right)^{\frac{1}{\alpha+1}} - \beta + 0.5.
\]
Demo

Coupling Capacitance Constraint
Experimental Results

- Insertion result is shown by our optimal algorithm with linear complexity
Conclusion

• First work on coupling-aware dummy metal insertion for lithography
• Consider the tradeoff between mask complexity, printability and coupling capacitance
• An optimal algorithm is proposed to minimize lithography cost subject to a given coupling capacitance bound