A New Boundary Element Method for Multiple-Frequency Parameter Extraction of Lossy Substrates

Xiren Wang, Wenjian Yu, and Zeyi Wang

EDA Lab, Dept. of Computer Science & Technology, Tsinghua University
Jan. 24, 2007
Outline

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using Direct Boundary Element Method (DBEM)
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions
Introduction of Substrate Coupling Problems

- In mixed-signal circuits
 - Digital and analog components are often built on a single lossy substrate (Si)
 - Coupling noises traveling through the substrate severely impact the sensitive analog components

- The quality factor of inductors in RF design is limited by substrate loss
 - Knowledge of substrate coupling is necessary, or even critical for design
Introduction of Substrate Coupling Problems

- Modeling of substrate coupling
 - Substrate resistance among contacts

- At higher frequency, both resistive and capacitive couplings should be considered [TCAD’98]

- Extraction of substrate parameters becomes a challenging task

Numerical Methods for Substrate Extraction

- Volume discretization methods
 - Finite Element Method (FEM)
 - Finite Difference Method (FDM)

- Advantage:
 - Versatile for various kinds of substrate structures
 - Stratified, with multiple parallel horizontal layers
 - More complicated, e.g. those with oxide wells, trenches, sinkers, buried diffusions, shielding for noise reduction

- Disadvantage:
 - Too many unknowns
 - Then, limited to small structures
Numerical Methods for Substrate Extraction

- Green’s function based methods (BEM)
 - Widely investigated

- Advantages:
 - Only discretizes contact surfaces, involves the fewest variables
 - Acceleration techniques proposed, such as DCT (discrete cosine), eigen-decomposition, etc.

- Disadvantages:
 - The derivation of Green’s function involves infinite series, which is expensive to calculate
 - Difficult, or even impossible to find the Green’s function for non-stratified substrates
Outline

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions
Consider both ohmic and displacement current; Each substrate material has a conductivity σ_i, and a permittivity ε_i. Z denotes the coupling impedance between the contacts (including the plane).
Direct Boundary Element Method (DBEM)

- Discretizes substrate boundary,
 - Contact surface
 - Medium boundary/interface
- Uses the simple free-space Green’s function
- Has no difficulty in handling non-stratified substrates
- Efficient techniques of unknown reduction and matrix sparsification have been proposed for substrate resistance extraction [TCAD’06]

High-Freq. Parameter Extraction using DBEM

- Within each medium
 \[\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0. \]

- Apply the Green’s identities, with the weighting function of free-space Green’s function
 \[c_s u_s + \int_{\Gamma_i} q^* u d\Gamma = \int_{\Gamma_i} u^* q d\Gamma \]

 \(u \) is electric potential, and \(q \) is its normal derivative on boundary
 \(s \) is a collocation point;
 \(u^* \) is the free-space Green’s function, and
 \(q^* \) is its normal derivative on boundary

- Get linear equations with unknowns of \(u \) and \(q \) on boundaries
- \(u \) or \(q \) has known values on the outer boundaries
Along the interface of medium a and b:
\[u_a = u_b, \]
\[(\sigma_a + j\omega \varepsilon_a)E_{n,a} = (\sigma_b + j\omega \varepsilon_b)E_{n,b}. \]

The linear equations for each medium can be combined together, to get an overall linear system

\[AX = B \]

A frequency-dependent complex-value system

To get whole impedance matrix, bias voltages are set on contacts, and \(B \) reflects these settings. \(X \) includes the unknowns of \(u \) and \(q \) on elements.

The current flowing through contact \(k \) is

\[\int_{\Gamma_k} (\sigma + j\omega \varepsilon)E_n d\Gamma = \frac{1}{Z_{mk}}, \text{if contact m is with 1V, and contact k 0V} \]
Outline

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
 - Extract substrate resistance (freq=0)
 - Perform one time
 - Revise solution of R extraction to freq.-dep. parameters
 - With improving techniques, easy for computation
- Numerical Results
- Conclusions
Multi-Frequency Extraction of Substrate

- When consider both ohmic and displacement current, the substrate coupling parameter \((Z)\) is frequency-dependent.

- In DBEM calculation
 - Interface equation includes frequency and imaginary
 \[
 (\sigma_a + j\omega\varepsilon_a)E_{n,a} = (\sigma_b + j\omega\varepsilon_b)E_{n,b}
 \]
 - Solve a frequency-dependent, complex-valued \(AX = B\)
 - Get freq.-dependent R and C from the complex-valued \(Z\)

- The substrate parameters for many frequencies are necessary for the knowledge of substrate coupling.

- The trivial approach to build and solve \(AX = B\) repeatedly loses its efficiency with the increase of frequency points.

- We propose a fast method for the multi-frequency extraction.
High Similarity of A_{res} and A

- Let A_{res} be the coefficient matrix for R extraction.
- It’s the equation for substrate resistance extraction, if we discard $j\omega\varepsilon$ items in $(\sigma_a + j\omega\varepsilon_a)E_{n,a} = (\sigma_b + j\omega\varepsilon_b)E_{n,b}$.
- The differences between A_{res} and A lie on entries corresponding to q variables on interfaces.
High Similarity of A_{res} and A (Cont.)

- In mathematics,

$$A = A_{res} + UV^T$$

Where U is a submatrix of A_{res}, and V is a sparse diagonal matrix.

$$UV^T = A - A_{res} = U \times V^T$$

$$f_{12} = \frac{\sigma_2 + j\omega\varepsilon_2}{\sigma_1 + j\omega\varepsilon_1}, \quad r_{12} = \frac{\sigma_2}{\sigma_1}$$

S_{12}, S_{23} are matrices with entries calculated from the integrals of $\int_{\Gamma_{ik}} u^* \, d\Gamma$. I_1 and I_2 are identity matrices.
Revise R to Frequency-Dependent Z

- According to Sherman-Morrison-Woodbury formula,

\[
A^{-1} = (A_{res} + UV^T)^{-1}
= A_{res}^{-1} - A_{res}^{-1}U(I + V^T A_{res}^{-1}U)^{-1}V^T A_{res}^{-1}
\]

\[
X = A^{-1}B = (A_{res} + UV^T)^{-1}B
= A_{res}^{-1}B - A_{res}^{-1}U(I + V^T A_{res}^{-1}U)^{-1}V^T A_{res}^{-1}B
= X_{res} - \{A_{res}^{-1}U(I + V^T A_{res}^{-1}U)^{-1}V^T \} X_{res}
\]

- Thus, freq.-dept. solution \((X)\) can be obtained through revising the solution for R extraction \((X_{res})\)
Efficient Technique for \((I + V^T A_{res}^{-1} U)^{-1}\)

\[
X = X_{res} - A_{res}^{-1} U (I + V^T A_{res}^{-1} U)^{-1} V^T X_{res}
\]

- Usually, difficult to get \((I + V^T A_{res}^{-1} U)^{-1}\)
- \(U\) and \(V\) are sparse matrices, and so is \(I + V^T A_{res}^{-1} U\)
- For the three-medium example:
Algorithm Flow

1. Generate A_{res} in (5). Select some entries to form U; Solve the real-valued problem of R extraction; Runs only once.

2. Solve for $X_{res} = A_{res}^{-1}B$ as well as for $A_{res}^{-1}U$;

3. For each frequency point, calculate the corresponding Z:
 a) Create such factors as $(f_{12}/r_{01}^{-1})I_1$ and $(f_{23}/r_{02}^{-1})I_2$, so as to form matrix V;
 b) Compress $I + V^T A_{res}^{-1}U$ into small matrix M;
 c) Inverse matrix M, and get W;
 d) Refill W to get matrix $(I + V^T A_{res}^{-1}U)^{-1}$;
 e) Get $X = X_{res} - A_{res}^{-1}U(I + V^T A_{res}^{-1}U)^{-1}V^TX_{res}$.
 f) Get the desired Z parameter through (9).

The order of M is # of interface elements, which is much less than total # of unknowns.
Outline

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions
Numerical Results -- Accuracy

Case from [TCAD’98]

The discrepancy between our results and those from [TCAD’98] < 1.0%

Since displacement current increases with frequency, the Z’s magnitude decreases with frequency.

Numerical Results -- Efficiency

Case with 52 contacts

Our method is compared with ASITIC, a shared program using DCT-accelerated Green’s function method.

For each frequency, our method solves a 587×587 matrix to calculate Z from the precalculated X_{res}.

Our method is much faster than ASITIC.

<table>
<thead>
<tr>
<th></th>
<th>DBEM</th>
<th>ASITIC</th>
</tr>
</thead>
<tbody>
<tr>
<td># Contacts</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td># Variables</td>
<td>7252</td>
<td>860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4352 (default)</td>
</tr>
<tr>
<td>Memory (MB)</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>
| Pre-process (seconds) | **420.9** | **360** **
| Extraction (for 1 freq.) | 9.0 | 9000 (Not obtained) |

*: Calculate resistance
**: Calculate Green’s function
Numerical Results -- Versatility

- An example with non-stratified substrate
 - The central block region has a distinct resistivity, called LVB (lateral variation block)
 - LVB’s resistivity is 1000 times larger
 - Size of LVB is set to be 0, 20, and 70\(\mu\)m
- Green’s function based method is not able to handle it, while our DBEM has no difficulty
- Right figure shows the plot of Magnitude vs. frequency, for three settings

Since LVB obstructs ohmic current flow, the Z for L=70 is larger than those corresponding to other two settings
Outline

- Introduction of Substrate Coupling Problems
- High-Frequency Parameter Extraction Using DBEM
- Efficient Techniques for Multi-Frequency Extraction
- Numerical Results
- Conclusions
Conclusions

- For frequency-dependent substrate modeling, we propose an efficient method for multi-frequency extraction
 - Based on DBEM, has ability to handle non-stratified structure
 - Do not directly solve the complex linear system, but firstly solve the R extraction problem with real linear system
 - For each frequency, the result of R extraction is revised to Z parameter through solving a smaller linear system

- The proposed method
 - Is efficient
 - Does not sacrifice accuracy
 - Has large versatility
Thank you!

For more information, please contact:

yu-wj@tsinghua.edu.cn