A 0.35um CMOS 1,632-gate count Zero-Overhead Dynamic Optically Reconfigurable Gate Array VLSI

Minoru Watanabe and Fuminori Kobayashi
Department of Systems Innovation and Informatics
Kyushu Institute of Technology, Japan
Dynamic Reconfiguration Advantage

Drawback of Conventional Programmable Devices

- LUT structure
- D-Flip Flop structure
- Transmission Gate

Drawback is based on LUT and transmission gate structure

Conventional Implementation
- Multi-Functions Unit or General purpose Unit

Dynamic reconfiguration Implementation
- Single Function Unit
- Parallel computation
Overview of optically reconfigurable gate array

Holographic Memory (virtual gates)

Laser Diodes Array

Large bandwidth - optical connections

ORGA- VLSI (real gates) which has a programmable gate array with photodiodes

Holographic Memory

2) According to the prospect of a future holographic memory, one cubic centimeter holographic memory will store 1 terabit, corresponding to about 250 billion gate count.
Improved Dynamic Optical Reconfiguration Circuit

- New circuit consists of a DORC and a pass transistor.
- The pass transistor is used for blocking off the connection between reconfiguration circuit and gate array circuit.
- The load capacitance is used for keeping the gate array state.
- The load capacitance is sufficient to maintain the state of gate array while reconfiguring.
An ORGA takes Island-Style gate array. The basic structure is same as that of current FPGAs. However, each programming element of the gate array is connected to a photodiode. Thereby, all state of the gate array can be programmed in perfectly parallel.
1,632 gate count ZO-DORGA-VLSI

Specification of a DORGA-VLSI

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.35 μm double-poly triple-metal CMOS process</td>
</tr>
<tr>
<td>Chip size</td>
<td>4.9 × 4.9 [mm]</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>Core 3.3V, I/O 3.3V</td>
</tr>
<tr>
<td>Photodiode size</td>
<td>9.5 × 8.8 [μm]</td>
</tr>
<tr>
<td>Horizontal Distance between Photodiodes</td>
<td>34.5 [μm]</td>
</tr>
<tr>
<td>Vertical Distance between Photodiodes</td>
<td>33.0 [μm]</td>
</tr>
<tr>
<td>Number of Photodiodes</td>
<td>6,213</td>
</tr>
<tr>
<td>Av. Aperture Ratio</td>
<td>4.24%</td>
</tr>
<tr>
<td>Number of Logic Blocks</td>
<td>48</td>
</tr>
<tr>
<td>Number of Switching Matrices</td>
<td>63</td>
</tr>
<tr>
<td>Number of Wires in a Routing Channel</td>
<td>8</td>
</tr>
<tr>
<td>Number of I/O bits</td>
<td>24</td>
</tr>
<tr>
<td>Gate Count</td>
<td>1,632</td>
</tr>
</tbody>
</table>

Photograph of a DORGA-VLSI
Design of a future high density DORGA

Specifications of a ZO-ORGA

- **Technology**: 0.35 μm 3-metal CMOS process
- **Chip size**: 9.8 × 9.8 [mm²]
- **Photodiode size**: 9.5 × 8.8 [μm²]
- **Horizontal distance**: 34.5 [μm]
- **Vertical distance between photodiodes**: 33.0 [μm]
- **Number of Photodiodes**: 38,591
- **Number of Logic Blocks**: 336
- **Number of Switching Matrices**: 375
- **Number of I/O Blocks**: 8 (32-bit)
- **Wiring channel**: 8
- **Gate Count**: 11,424 gates
Conclusion

• This presentation presents

(a) the design of a fabricated world’s largest 1,632 gate count ZO-DORGA-VLSI,
(b) an over 10,000 gate count VLSI by using 9.8mm square CMOS process chip and same logic blocks and switching matrices.

Acknowledgments
This research was partially supported by the project of development of high-density optically and partially reconfigurable gate arrays under Japan Science and Technology Agency, funds from the MEXT via Kitakyushu and Fukuoka innovative cluster projects, and the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 18760256, 2006. The VLSI chip in this study was fabricated in the chip fabrication program of VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Rohm Co. Ltd. and Toppan Printing Co. Ltd.