
1

Flexible and Executable Hardware/Software
Interface Modeling for Multiprocessor SoC
Design Using SystemC

Patrice GERIN
Alexandre CHUREAU

Hao SHEN
Aimen BOUCHHIMA

Ahmed JERRAYA

TIMA Laboratory– SLS Group
46 Avenue Félix VIALLET

38031 Grenoble Cedex France
Email : patrice.gerin@imag.fr

mailto:patrice.gerin@imag.fr

2

Hardware
node

Interface

Software
node

Interface

Communication Network

Hardware
node

Interface

Software
node

Interface

Communication Network

Definition : HW/SW Interfaces for
MPSoC

Heterogeneous MPSoC :
– HW nodes
– SW nodes

Software node :
– Specific CPU subsystem

GPP, DSP, ASIP
I/O, Memory architecture

– Layered software architecture
High level application code.
Hardware Dependent Software (HDS)

HW/SW Interfaces for SoC Design
– Hide HDS and specific HW
– Provide SW API to the HL code
– Offered different abstraction levels

Multi-Thread
application

Operating
System

Specific
I/O

HAL

CPU DMAMEM

bridge Network
interface

Hardware
Co-processor

HW/SW
Interface

Model

HW PROTOCOL

SW interface

3

Classical HW/SW Interfaces
Abstraction Models : The GAP

Functional
specification

Partition
ning

Software design

Hardware design

Integration ISA/RTLHardware/SoftwareHardware/Software
discontinuitydiscontinuity

Correction cycle

System Level Virtual Prototype

Early HW/SW integration

Software Sub-System

Software
Thread 1

Software
Thread 2

Hardware

Binary
SW Appli

OS
HAL

ISS

FIFO

IT Ctrl

MEM

HW

Software Sub-System
Software
Thread 1

Software
Thread 1

Hardware

GAPGAP
Fully implicit

HW/SW Interface

Fully explicit
HW/SW Interface

Abstract
HW/SW Interface

4

Abstract HW/SW interfaces
State Of Arts

Modeling HW/SW Interfaces
– SW oriented approach : fully implicit hardware

OS validation can not include interaction with hardware
No accurate performances estimation

– HW oriented approach : Binary software
OS debug is fastidious
Simulation time too long

System Level Design Methods
– Fixed architecture Model
– Restricted application/architecture (TTL,DSOC)

What is needed :
Executable HW/SW interface model allowing early
OS debug and accurate performance estimation

5

Objectives & Contributions

Objectives
– Early Operating System validation
– Early performances measurement

Contributions
– A unified executable model of HW/SW interfaces
– A new design flow allowing fast and accurate

simulation of abstract HW/SW interfaces

6

Outline

Introduction
Hardware/Software Interfaces modeling
Transaction Accurate Level
Executable model in SystemC
Experiments
Future Works, conclusion

7

Outline

Introduction
Hardware/Software Interfaces modeling
Transaction Accurate Level
Executable model in SystemC
Experiments
Future Works, conclusion

8

Interface modeling at Transaction
Accurate Level

To be abstracted
– HAL software layer
– Details of CPU subsystem

SW interface : HAL API
– Context switch
– Spin lock
– IO Read/Write

HW interface : HW protocol
– VCI, AMBA,…
– Specific HW interface (FIFO)

CPU DMAMEM

bridge Network
interface

Hardware
Co-processor

Multi-Thread
application

Operating
System

Specific
I/O

HAL

Hardware

HW/SW Interface
At Transaction
Accurate Level

HW PROTOCOL

HAL API

9

Interface modeling at Transaction
Accurate Level

Execution Unit modeled the
parallel computation
Access Unit models
communication in the CPU
subsystem
Data Unit encapsulate model of
physical devices
Synchronization Unit model
interrupt management and
controller mechanism

This set of elements implement
adaptation between the software
and the hardware interface.

CPU DMAMEM

bridge Network
interface

Hardware
Co-processor

Multi-Thread
application

Operating
System

Specific
I/O

HAL

Hardware

HW/SW Interface
At Transaction
Accurate Level

HW PROTOCOL

HAL API
Access Unit Synchro

Unit

Data Unit
Device Device

Execution Unit

HW PROTOCOL

HAL_API

10

Services for HW/SW
interfaces adaptation

Both HW and SW
interfaces are modeled as
set of services (provided/required)

Component based
interface adaptation
– Software elements
– Hardware elements
– Hybrid elements

Hardware

Software Sub-System

Software
Thread 1

Software
Thread 2

Hyb

SW

HW

11 HW interface

SW interface

Interface implementation

Interface element concept
– Elements require or/and provide

services
– A services stand for a

functionality
A Hardware/Software interface
consist in assembling software,
hybrid and hardware elements.
Already used to model :

– Software (Zitterbart, Gauthier,
Kriaa and Sarmento)

– Hardware (Grasset)

S1

S3

S1
Process

Process

Process

12

Outline

Introduction
Hardware/Software Interfaces modeling :
Transaction Accurate Level
Executable model in SystemC
Experiments
Future Works, conclusion

13

Software Services in SystemC

SystemC sc_interface mechanism
sc_interface service

sc_export Provided service
sc_port Required service

sc_module Element

Equivalence between
SystemC objects and

service concept

Module 1

fctProcess

Module 2

Implementation

sc_port

sc_export

Function call

14

Mutex

Software element

Only exported C++ method to
implement SW services
No SystemC SC_THREAD,
SC_CTHREAD or SC_METHOD
No SystemC wait()

SC_MODULE(Mutex),
public LOCK, public UNLOCK

sc_export<LOCK> pLock;
sc_export<UNLOCK> pUnlock;
sc_port<SEM> pSem;

int lock();
int unlock();

SC_CTOR(Mutex)
: pLock("pLock"),

pUnlock("pUnlock")
pSem("pSem")

{

}

{

};

pLock(*this);
pUnlock(*this);

class LOCK : public sc_interface
{

virtual int lock() = 0;
};

lock

unlock

LOCK SEM

UNLOCK

15

Hardware element

Hardware
– Services are implemented by

SC_THREAD and accessible
through a set of ports

– No exported C++ method

“Standard” SystemC
implementation

Process

S1 S2

S3

Process

16

Hybrid element

Hybrid combine HW and SW
element:

– exported C++ method to
implement SW services

– Contain SystemC threads to
implement HW services

– Can call SystemC wait to
introduce time.

S1

Process

S1 S2

S3

17 EXEC_UNIT

Hybrid element and Software execution
model

Hybrid elements are the key elements to
model sequential software execution

– Used to implement execution unit (CPU)
– A hardware thread represent the processor
– This hardware thread can model low level

initialization.
– Call the OS_INIT software service provided by

the application
– All the software is executed sequentially

Software simulation time is introduced with
annotation in the application.

– Calls to a consume service will modeled the
time consumed by the software in the
processor thread context.

hw_thread

CONSUME OS_INIT

Software
Application

(Appli + OS + COM)

18

Software simulation detailed

EXEC_UNIT model the low
level initializations and boot
the OS
OS and application are
executed sequentially
Call to CONSUME allow
SystemC kernel to manage
HW concurrent simulation.
consume can also be called
from the elements of the TA
model to increase accuracy.

Simulation start
EXEC_UNIT OS Appli

19

Outline

Introduction
Hardware/Software Interfaces modeling
Transaction Accurate Level
Executable model in SystemC
Experiments
Future Works, conclusion

20

HARDWARE

SOFTWARE

Motion JPEG application :
System Level Model

High Simulation speed
Easiest functional validation
No Operating System details
No details on communications

6 software and 2 hardware tasks
Execution model synchronized
with communications

thread
Communication

channel

TRAFFIC
GENERATOR

VIDEO
OUT

DEMUX

VLD IQ ZZ

IDCTLIBU

21

Motion JPEG application :
Virtual Prototype Model

Detailed communications
Performances precision
Fastidious Operating System
validation
Very slow simulation

Binary
SW Appli
Mutek OS

HAL

ISS

FIFO

IT Ctrl

MEM

TG

VCI Cross bar

VIDEO

Software tasks executed on a
POSIX compliant OS : MUTEK
Software interpreted by the target
processor ISS
Rest of the system at RTL level

HW/SW Interface
At Transaction
Accurate Level

HW PROTOCOL

HAL API

22

Experiment simulations

3 simulations
Same SW application code in the 3 models
Same OS code in T.A. and V.P.

MJpeg Appli

Host OS
(LINUX)

POSIX API

SW view of HW
POSIX API

System Level

MJpeg Appli
POSIX API

MUTEK OS

T.A. Model

HW PROTOCOL

POSIX API

Hardware
Transaction Accurate

MJpeg Appli
POSIX API

MUTEK OS
HAL API

HAL (sparc)

ISS + Sub-System

Hardware
HW PROTOCOL

Virtual Prototype

235s/frame
(2 Sparc ISS)

1.2s/frame
(2 Execution Unit)

0.017s/frame
(No CPU)

23 HW
PROTOCOL

HAL
API

Motion JPEG application :
Transaction Accurate Model

Pure software
elements

– CONTEXT
– INTERRUPT

Pure Hardware
– VCI FIFO

Hybrid elements
– CROSSBAR
– VCI WRAPPER
– EXEC_UNIT
– …

OS
INIT

SMP
THIS

COUNT

IO_ACCESS
READ
WRITE

DIAGNOSTIC
CONSUME

MEM VCI_WRAPPER

FIFO

XBAR

CXT
INIT

SWITCH

SPIN
LOCK

UNLOCK

CONTEXT

EXEC_UNIT

HS_WRITEREQ ACK DATA

IT
MASK

UNMASK

IT_CTRL

INTERRUPT

SPIN

HS_READ REQ ACK DATA

24

Simulation results at Transaction
Accurate Level

More detailed trace than System Level
Operating System debug capabilities (global
synchronizations, timing behaviour, standard debugger)
195 times faster than the Virtual Prototype for this
implementation

Loss of time due to
blocking communication

25 HW
PROTOCOL

HAL
API

Hybrid DMA
element added
Application
modified to use
DMA
Interleaving of
communication
computation

Modifying the HW/SW interface model

OS
INIT

SMP
THIS

COUNT

IO_ACCESS
READ
WRITE

DIAGNOSTIC
CONSUME

MEM VCI_WRAPPER

FIFO

XBAR

CXT
INIT

SWITCH

SPIN
LOCK

UNLOCK

CONTEXT

EXEC_UNIT

HS_WRITEREQ ACK DATA

IT
MASK

UNMASK

IT_CTRL

INTERRUPT

SPIN

HS_READ REQ ACK DATA

DMA

26

Modifying the HW/SW interface model

Simulation allow to validate the DMA
communication and to verify the effect on
the application threads execution

27

Outline

Introduction
Hardware/Software Interfaces modeling
Transaction Accurate Level
Executable model in SystemC
Experiments
Future Works, conclusion

28

Future works

Apply the proposed approach to
other abstraction level :

– Virtual Architecture, abstract the
operating system and the specific
communication

HW/SW interface design
automation to enable :

– Architecture exploration.
– Refinement

CPU DMAMEM

bridge Network
interface

Hardware
Co-processor

Multi-Thread
application

Operating
System

Specific
I/O

HAL

Hardware

HW/SW Interface
At Transaction
Accurate Level

HW interface

SW interfaceHW/SW Interface
At Virtual

Architecture
Level

HW interface

SW interface

29

Conclusion

Executable Hardware/Software interface model.
Results : Earlier HW/SW integration

– Fast and accurate simulation of full MJPEG system
– Executable model in a standard environment

(SystemC)
Benefits :

– Operating System Validation
– Early performance estimation

30

Thank you

Questions ?

	Flexible and Executable Hardware/Software Interface Modeling for Multiprocessor SoC Design Using SystemC
	Definition : HW/SW Interfaces for MPSoC
	Classical HW/SW Interfaces Abstraction Models : The GAP
	Abstract HW/SW interfaces �State Of Arts
	Objectives & Contributions
	Outline
	Outline
	Interface modeling at Transaction Accurate Level
	Interface modeling at Transaction Accurate Level
	Services for HW/SW�interfaces adaptation
	Interface implementation
	Outline
	Software Services in SystemC
	Software element
	Hardware element
	Hybrid element
	Hybrid element and Software execution model	
	Software simulation detailed
	Outline
	Motion JPEG application :�System Level Model
	Motion JPEG application :�Virtual Prototype Model
	Experiment simulations
	Motion JPEG application :�Transaction Accurate Model
	Simulation results at Transaction Accurate Level
	Modifying the HW/SW interface model
	Modifying the HW/SW interface model
	Outline
	Future works
	Conclusion
	Thank you

