Optimum Prefix Adders in a Comprehensive Area, Timing and Power Design Space

Jianhua Liu1, Yi Zhu1, Haikun Zhu1, John Lillis2, Chung-Kuan Cheng1

1Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093

2Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607
Outline

- Previous Works and Motivation
- Area/Timing/Power Model
- ILP Formulation of Prefix Adder
- Experimental Results
- Conclusions
Previous Works and Motivation

- Parallel prefix adder is the most flexible and widely-used binary adder for ASIC designs.
- Prefix network formulation:

 Pre-processing:
 \[g_i = a_i b_i \]
 \[p_i = a_i \oplus b_i \]

 Prefix Computation:
 \[G_{[i:k]} = G_{[i:j]} + P_{[i:j]} G_{[j-1:k]} \]
 \[P_{[i:k]} = P_{[i:j]} P_{[j-1:k]} \]

 Post-processing:
 \[c_{i+1} = G_{[i:0]} + P_{[i:0]} \cdot c_0 \]
 \[s_i = p_i \oplus c_i \]
Each output network is an alphabetical tree:

- Output i is the root of a binary tree covering inputs 1-i.
- An in-depth traversal of the tree terminals follows the sequence of the inputs.

Previous Works and Motivation
Previous Works and Motivation

Brent-Kung:
Logical levels: $2\log_2 n - 1$
* Max fanouts: 2
Wire tracks: 1

Sklansky:
Logical levels: $\log_2 n$
Max fanouts: n/2
Wire tracks: 1

Kogge-Stone:
Logical levels: $\log_2 n$
Max fanouts: 2
Wire tracks: n/2

Max Fanouts is based on the regular buffer insertions at all empty space
The design space of prefix adder is considered as the tradeoff among logical levels, max fanouts and wire tracks. *Harris D, "A Taxonomy of Parallel Prefix Networks" Nov. 2003.

Logical levels: \(L = \log_2 n + l \)
Max fanouts : \(F = 2^f + 1 \)
Wire tracks : \(T = 2^t \)
\[l + f + t = \log_2 n - 1 \]

Timing: \(L \times F \times Dgp \)
\((Dgp: \text{delay of one GP adder with unit load}) \)

Area: \(L \times (Hgp + T \times Hwt) \times n \)
\((Hgp: \text{Height of one GP adder} \)
\(Hwt: \text{Height of one wire track} \)

Favor the minimal logical levels
Previous Works and Motivation

- Increasing impact of physical design.
- Power becomes a critical concern.
Previous Works and Motivation

- **Input:** bit width, physical area, input arrival times, output required times.
- **Output:** placed prefix adder
- **Constraint:** alphabetical tree rooted at each output i to cover inputs 1 to i, area and timing requirements
- **Objective:** minimize power consumption
Models – Area Model

- Distinguish physical placement from logical structure, but keep the bit-slice structure.

\[A = n \times m \]

- \(n \): Bit width
- \(m \): Physical depth
Models – Timing Model

- Cload includes both gate and wire capacitance. Wire capacitance is proportional to wire length.

\[C_{load} = C_{wire} + C_{gate} \]
\[C_{wire} = \lambda^w \times (H_{bb} + W_{bb}) \]
\[C_{gate} = \sum C_{in} \]

\((\lambda^w = 0.5)\)

- Use a linear timing model derived from logical effort.

\[\text{Delay}_{GP^l} = 1.5 \ C_{load} + 2.5 \]
\[\text{Delay}_{GP^r} = 2.0 \ C_{load} + 2.5 \]

Harris D, Sutherland I, ”Logical Effort of Carry Propagate Adders”, 2004.
Models – Power Model

- Total power consumption:
 Dynamic power + Static Power

- Static power: leakage current of device
 \[P_{sta} = \lambda^s \] \((\lambda^s = 0.5) \)

- Dynamic power: current switching capacitance
 \[P_{dyn} = \rho \times C_{load} \]

- \(\rho \) is the switching probability
 \[\rho = j \] \((j \) is the logical level*)

\[P_{total} = P_{dyn} + P_{sta} = j \cdot C_{load} + \lambda^s \]

* Vanichayobon S, etc, “Power-speed Trade-off in Parallel Prefix Circuits”, 2002
ILP on Prefix Adder – Overall Picture

- We propose to formulate prefix computation as Integer Linear Programming (ILP) problem.
- Optimum solution can be produced by contemporary ILP solver.

Structure variables:
- GP adders
- Connections
- Physical positions

Capacitance variables:
- Gate cap
- Vertical wire cap
- Horizontal wire cap

Timing variables:
- Input arrival time
- Output arrival time

Power objective

Structure variables defines the ILP solution space
ILP – Linear Programming

- Linear Programming: linear constraints, linear objective, fractional variables.

Maximize:
\[x_1 + 2x_2 + 3x_3 \]
subject to:
\[-x_1 + x_2 + x_3 \leq 20 \]
\[x_1 - 3x_2 \leq 30 \]

\[
\begin{bmatrix}
-1 & 1 & 1 \\
1 & -3 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
\leq
\begin{bmatrix}
20 \\
30 \\
\end{bmatrix}
\]

LP problems are polynomial time solvable (interior point algorithm, Karmarkar 1984)
ILP – Integer Linear Programming

- Integer Linear Programming: all variables are integers.

ILP problem with bounded variables is NP-hard.
ILP – Branch and Bound

- Brach and bound with linear relaxation algorithm in ILP solvers:

Minimize $F(b_1, b_2, b_3, b_4, f_1, \ldots)$

b_i is binary

Root (all vars are fractional)

Cut

Bound (Smallest candidate)

It is VERY helpful if ILP objective is close to LP objective
ILP – Pseudo-Linear Constraint

- A constraint is called pseudo-linear if it’s not effective until some integer variables are fixed.

Problem:

Minimize: x_3
Subject to: $x_1 \geq 300$
$\quad x_2 \geq 500$
$\quad x_3 = \min(x_1, x_2)$

ILP formulation:

Minimize: x_3
Subject to: $x_1 \geq 300$
$\quad x_2 \geq 500$
$\quad x_3 \leq x_1$
$\quad x_3 \leq x_2$
$\quad x_3 \geq x_1 - 1000 b_1$ \hspace{1cm} (1)
$\quad x_3 \geq x_2 - 1000 (1 - b_1)$ \hspace{1cm} (2)
b_1 is binary

- Pseudo-linear constraints mostly arise from IF/ELSE scenarios
 - binary decision variables are introduced to indicate true or false.
ILP – Summary

- Integer Linear Programming is a powerful solution space search tool guided by Linear Programming.
- However, pseudo-linear constraints may compromise the efficiency.
ILP on Prefix Adder – Structure

- ILP decision variables represent GP adders and interconnects in logical view.
- Alphabetical tree rooted at each output.
 - Each GP adder has exact one left input and one right input. (*fanin const.*)
 - At least one input is from the previous level. (*logical level const.*)
 - Every GP adder roots an alphabetical tree covering a continuous segment. (*root const.*)
ILP on Prefix Adder – Structure

Variables:

- $gp(i,j) \{0,1\}$: GP adders in the $n \times d$ array (d: logical depth)
- $wl(i,j,h) \{0,1\}$: The wire from (i,h) to the left fanin of (i,j)
- $wr(i,j,k,l) \{0,1\}$: The wire from (k,l) to the right fanin of (i,j)

Constraints:

- **(fanin const.)** One left/right fanin for each GP adder
 \[
 \sum_h wl(i,j,h) = gp(i,j) \quad \forall (i,j) \quad i > h
 \]
 \[
 \sum_{(k,l)} wr(i,j,k,l) = gp(i,j) \quad \forall (i,j) \quad i > k \& j > l
 \]

- **(logical level const.)** At least one fanin from the previous level
 \[
 wl(i,j,j-1) + \sum_k wr(i,j,k,j-1) \geq gp(i,j) \quad \forall (i,j)
 \]
ILP on Prefix Adder – Structure

- The segment information is necessary for root constraint. The GP segments of two children must be adjacent.

Variables:
- \(gpl(i,j), gpr(i,j) \) int [1,n]:
 The segment covered by \(gp(i,j) \) is \([gpl(i,j):gpr(i,j)]\)

Constraints:
- (root const.) The GP segments of two children must be adjacent
 \[gpl(i, j) = gpl(i, h) \text{ if } wl(i, j, h) = 1 \] \((1) \)
 \[gpr(i, j) = gpr(k, l) \text{ if } wr(i, j, k, l) = 1 \]
 \[gpr(i, h) = gpl(k, l) + 1 \text{ if } wl(i, j, h) = 1 \& wr(i, j, k, l) = 1 \]

Conditional constraint (1) in ILP formulation:
- \(gpl(i, j) \geq gpl(i, h) - n \cdot (1 - wl(i, j, h)) \)
- \(gpl(i, j) \leq gpl(i, h) + n \cdot (1 - wl(i, j, h)) \)
ILP on Prefix Adder – Structure

- Physical position variable attached to each GP adder describes physical level.
- No overlap in the physical view. *(overlap const.)*

Variables:
- $phy(i,j)$ int $[1,m]$: The physical position of $gp(i,j)$ is $(i, phy(i,j))$.
 (m: physical depth)

Constraints:
- *(overlap const.)* Each physical position contains at most one GP adder

$$phy(i, j) \neq phy(i, h) \quad \forall i, j \neq h$$
ILP on Prefix Adder – Example

\[gp(2,1)=1, \; wl(2,1,0)=1, \; wr(2,1,1,0)=1 \]
\[gp(3,2)=1, \; wl(3,2,0)=1, \; wr(3,2,2,1)=1 \]
\[gp(4,3)=1, \; wl(4,3,0)=1, \; wr(4,3,3,2)=1 \]

Logical view

\([gpl(2,1):gpr(2,1)] = [2:1]\)
\([gpl(3,2):gpr(3,2)] = [3:1]\)
\([gpl(4,3):gpr(4:3)] = [4:1]\)

Physical view

\[phy(2,1)=1 \]
\[phy(3,2)=1 \]
\[phy(4,3)=2 \]
ILP on Prefix Adder – Capacitance

- Gate capacitance is calculated based on logical fanouts.
 - Gate cap equals to the number of fanouts, when input cap of GP adder is 1 unit. (*gate const.*)

- Wire capacitance depends on physical placement.
 - Vertical wire cap is proportional to the max vertical height of each fanout. (*wire const.*)
 - Horizontal wire cap is proportional to the max horizontal width of each fanout. (*wire const.*)
ILP on Prefix Adder – Capacitance

Variables:

- \(C_g(i,j) \) float: Gate load capacitance of \((i,j)\)
- \(C_wv(i,j) \) float: Vertical wire load capacitance of \((i,j)\)
- \(C_wh(i,j) \) float: Horizontal wire load capacitance of \((i,j)\)

Constraints:

- \((\text{gate const.})\) Gate load capacitance:
 \[
 C_g(i, j) = \sum_{h} w_l(i, h, j) + \sum_{(k,l)} w_r(k, l, i, j)
 \]
- \((\text{wire const.})\) Wire load capacitances:
 \[
 C_wv(i, j) \geq \lambda^w (\text{phy}(i, h) - \text{phy}(i, j)) \quad \text{if} \quad w_l(i, h, j) = 1 \quad (\lambda^w = 0.5)
 \]
 \[
 C_wv(i, j) \geq \lambda^w (\text{phy}(k, l) - \text{phy}(i, j)) \quad \text{if} \quad w_r(k, l, i, j) = 1
 \]
 \[
 C_wh(i, j) \geq \lambda^w (k - i) \quad \text{if} \quad w_r(k, l, i, j) = 1
 \]
ILP on Prefix Adder – Timing

- The output time is the max path delay. (*output const.*)
- Input arrival times equal to the output times of two children. (*input const.*)
- According to the timing model, gate delay is calculated based on load capacitance.

\[
\text{Delay}_{\text{GP}} = 1.5 \ C_{\text{load}} + 2.5 \\
\text{Delay}_{\text{GP'}} = 2.0 \ C_{\text{load}} + 2.5
\]
ILP on Prefix Adder – Timing

Variables:

• $T_l(i,j)$ float: Left input arrival time of (i,j)

• $T_r(i,j)$ float: Right input arrival time of (i,j)

• $T(i,j)$ float $[0, T_{max}]$: Output time of (i,j)

(T$_{max}$: Output required time.)

Constraints:

• (input const.) Input arrival times:

 $T_l(i,j) = T(i,h)$ if $wl(i,j,h) = 1$

 $T_r(i,j) = T(k,l)$ if $wr(i,j,k,l) = 1$

• (output const.) Output time:

 $T(i,j) \geq T_l(i,j) + 1.5 \cdot C_{load}(i,j) + 2.5$

 $T(i,j) \geq T_r(i,j) + 2.0 \cdot C_{load}(i,j) + 2.5$

 ($C_{load}(i,j) = C_g(i,j) + C_{wv}(i,j) + C_{wh}(i,j)$)
ILP on Prefix Adder – Power

- Total power consumption is the summation of power consumption on each GP adder.
- The objective is to minimize total power consumption.

\[
\text{Minimize : } \sum_{(i,j)} j \cdot C_{\text{load}}(i,j) + \lambda^S \cdot g_p(i,j)
\]
ILP on Prefix Adder – Example

C\(_{g}(2, 1)\) = 1, C\(_{wv}(2, 1)\) = 0, C\(_{wh}(2, 1)\) = 0.5
C\(_{g}(3, 2)\) = 1, C\(_{wv}(3, 2)\) = 0.5, C\(_{wh}(3, 2)\) = 0.5
C\(_{g}(4, 3)\) = 0, C\(_{wv}(4, 3)\) = 0, C\(_{wh}(4, 3)\) = 0

\(C_{load}(2, 1) = 1.5\)
\(C_{load}(3, 2) = 2\)
\(C_{load}(4, 3) = 0\)

\(T_{l}(2, 1) = 0, T_{r}(2, 1) = 0, T(2, 1) = 0 + 2 \times 1.5 + 2.5 = 5.5\)
\(T_{l}(3, 2) = 0, T_{r}(3, 2) = 5.5, T(3, 2) = 5.5 + 2 \times 2 + 2.5 = 12\)
\(T_{l}(4, 3) = 0, T_{r}(4, 3) = 12, T(4, 3) = 12 + 2 \times 0 + 2.5 = 14.5\)

Power = \(1 \times C_{load}(2, 1) + 2 \times C_{load}(3, 2) + 3 \times C_{load}(4, 3) + 3 \times 3 = 14.5\)
ILP on Prefix Adder – Extension

- Gate sizing and buffer insertion are two important optimization technologies to improve performance.
- Gate sizing: decrease gate delay, increase input capacitance.
- Buffer insertion: introduce new element, impact placement.
- Gate sizing and buffer insertion can be supported by ILP formulation.
Experimental Results

- Optimum prefix adders solved by CPLEX 9.1
- 8-bit prefix adders
 - Uniform input arrival time
 - Non-uniform input arrival time
- Hierarchical 64-bit prefix adders
- 64-bit prefix adder implementation (Synopsys flow, TSMC 90nm technology)
 - Module Compiler
 - Astro
 - Prime Power
Experimental Results – 8-bit Uniform

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing (D_{FO4})</th>
<th>Depth</th>
<th>Power (P_{FO4})</th>
<th>CPU (s)</th>
<th>Method</th>
<th>Timing (D_{FO4})</th>
<th>Depth</th>
<th>Power (P_{FO4})</th>
<th>CPU (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP</td>
<td>10.0</td>
<td>1</td>
<td>20.1</td>
<td>0.31</td>
<td>K-S</td>
<td>6.2</td>
<td>3</td>
<td>29.0</td>
<td>-</td>
</tr>
<tr>
<td>ILP</td>
<td>10.0</td>
<td>2</td>
<td>17.5</td>
<td>124</td>
<td>ILP</td>
<td>6.0</td>
<td>2</td>
<td>20.9</td>
<td>259</td>
</tr>
<tr>
<td>ILP (S)</td>
<td>9.0</td>
<td>1</td>
<td>25.6</td>
<td>2.83</td>
<td>ILP</td>
<td>5.6</td>
<td>2</td>
<td>22.9</td>
<td>45.7</td>
</tr>
<tr>
<td>ILP</td>
<td>9.0</td>
<td>2</td>
<td>17.5</td>
<td>83.4</td>
<td>ILP (S)</td>
<td>5.6</td>
<td>2</td>
<td>21.6</td>
<td>756</td>
</tr>
<tr>
<td>ILP (S)</td>
<td>8.6</td>
<td>1</td>
<td>27.6</td>
<td>1.28</td>
<td>ILP</td>
<td>5.6</td>
<td>3</td>
<td>21.9</td>
<td>1237</td>
</tr>
<tr>
<td>ILP</td>
<td>8.6</td>
<td>2</td>
<td>17.5</td>
<td>93.2</td>
<td>ILP (S)</td>
<td>5.0</td>
<td>2</td>
<td>23.6</td>
<td>1208</td>
</tr>
<tr>
<td>B-K</td>
<td>7.8</td>
<td>3</td>
<td>19.9</td>
<td>-</td>
<td>ILP</td>
<td>5.0</td>
<td>3</td>
<td>25.6</td>
<td>4563</td>
</tr>
<tr>
<td>ILP</td>
<td>7.6</td>
<td>2</td>
<td>18.0</td>
<td>112</td>
<td>ILP</td>
<td>4.6</td>
<td>3</td>
<td>26.1</td>
<td>7439</td>
</tr>
<tr>
<td>ILP</td>
<td>7.0</td>
<td>2</td>
<td>18.6</td>
<td>99.6</td>
<td>ILP (S)</td>
<td>4.2</td>
<td>3</td>
<td>27.9</td>
<td>9654</td>
</tr>
<tr>
<td>Skl</td>
<td>6.8</td>
<td>3</td>
<td>20.8</td>
<td>-</td>
<td>ILP (S)</td>
<td>4.0</td>
<td>4</td>
<td>36.4</td>
<td>20211</td>
</tr>
</tbody>
</table>

(S): Gate sizing, B-K: Brent-Kung, Skl: Sklansky, K-S: Kogge-Stone
Experimental Results – 8-bit Uniform
Experimental Results – 8-bit Uniform

- Some typical ILP results:

 All the 8-bit fastest prefix adders have 4 logical levels
Experimental Results – 8-bit Non-Uniform

<table>
<thead>
<tr>
<th>Case</th>
<th>Power</th>
<th>Depth</th>
<th>Power*</th>
<th>Depth*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing arrival times</td>
<td>20.8</td>
<td>3</td>
<td>26.1</td>
<td>3</td>
</tr>
<tr>
<td>Decreasing arrival times</td>
<td>25.1</td>
<td>3</td>
<td>26.1</td>
<td>3</td>
</tr>
<tr>
<td>Convex arrival times</td>
<td>21.6</td>
<td>2</td>
<td>23.6</td>
<td>3</td>
</tr>
</tbody>
</table>

* Use the worst input arrival time for all inputs
Experimental Results – 64-bit Hierarchical

For high bit-width application, ILP method can be applied in a hierarchical design strategy.
Experimental Results – 64-bit Hierarchical

- Hierarchical ILP designs in solution space:
 (The physical depth is set to 6)

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing (D_{FO4})</th>
<th>Power (P_{FO4})</th>
<th>Method</th>
<th>Timing (D_{FO4})</th>
<th>Power (P_{FO4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical ILP</td>
<td>28</td>
<td>369</td>
<td>Hierarchical ILP</td>
<td>18</td>
<td>386</td>
</tr>
<tr>
<td>Brent-Kung</td>
<td>27</td>
<td>473</td>
<td>Sklansky</td>
<td>17</td>
<td>492</td>
</tr>
<tr>
<td>Hierarchical ILP</td>
<td>26</td>
<td>370</td>
<td>Hierarchical ILP</td>
<td>16</td>
<td>402</td>
</tr>
<tr>
<td>Hierarchical ILP</td>
<td>24</td>
<td>373</td>
<td>Hierarchical ILP</td>
<td>15</td>
<td>416</td>
</tr>
<tr>
<td>Hierarchical ILP</td>
<td>22</td>
<td>375</td>
<td>Kogge-Stone</td>
<td>15</td>
<td>3032</td>
</tr>
<tr>
<td>Hierarchical ILP</td>
<td>20</td>
<td>379</td>
<td>Hierarchical ILP</td>
<td>14</td>
<td>473</td>
</tr>
</tbody>
</table>
37

The power of Kogge-Stone add is much larger than other prefix adders.

Experimental Results – 64-bit Hierarchical
Experimental Results – 64-bit Hierarchical

- The fastest 64-bit hierarchical ILP adder:
Experimental Results – 64-bit Implementation

- 64-bit ILP prefix adders compared with 64-bit fast prefix adders generated by Module Compiler with relative placement.

<table>
<thead>
<tr>
<th></th>
<th>ILP</th>
<th>Module Compiler</th>
<th>Power Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Timing (ns)</td>
<td>Total Power [Wire Power] (mW)</td>
<td>Timing (ns)</td>
</tr>
<tr>
<td>0.74</td>
<td>1.9 [0.93]</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>0.76</td>
<td>1.8 [0.90]</td>
<td></td>
<td>0.83</td>
</tr>
<tr>
<td>1.13</td>
<td>1.15 [0.65]</td>
<td></td>
<td>1.24</td>
</tr>
</tbody>
</table>
Experimental Results – 64-bit Implementation

64-bit ILP Prefix Adder Physical View

64-bit MC Prefix Adder Physical View
Conclusions

- We propose an ILP method to solve minimal power prefix adders.
- The comprehensive area/timing/power model involves physical placement, gate/wire capacitance and static/dynamic power consumption.
- The ILP method can handle gate sizing, buffer insertion for both uniform and non-uniform input arrival time applications.
- The ILP method can be applied in hierarchical design methodology for high bit-width applications.
Thank You