A Wafer-Level Defect Screening Technique to Reduce Test and Packaging Costs for “Big-D/Small-A” Mixed-Signal SoCs

Sudarshan Bahukudumbi, Sule Ozev, Krishnendu Chakrabarty, Vikram Iyengar§

Department of Electrical and Computer Engineering, Duke University
§IBM Microelectronics, Essex Junction, VT
Outline

• Introduction
• Motivation: Wafer-level, mixed-signal defect screening
 – Challenges
• Wafer-level defect screening
 – Correlation based signature analysis techniques
• Cost Model
 – Cost components
 – Analysis framework
 – Results
• Experimental Results
• Conclusions
“Big-D Small-A” SoC

Introduction

• Increasing popularity due to importance in consumer electronics market

• Fraction of die area comprising of analog/mixed-signal ~10%

• Typical “Big-D Small-A” SoC components:
 • Pair of complementary data converters
 • Large portion of digital logic
 • Phased Locked Loop (PLL)
“Big-D Small-A” SoC

Example

- Typical "Big-D small-A" mixed-signal SoC\[*\]: DragonBallTM-MX1 (ARM-core-based Motorola IC)

- Fraction of die area comprising of analog/mixed-signal: 10%
 - 7% Sigma-Delta data converters and 3% PLL

\[*\] G. Bao, “Challenges in Low Cost Test Approach for ARMTM Core Based Mixed-Signal SoC DragonBallTM-MX1”, Proc. Of the Intl. Test Conference, 2003
Motivation: Wafer-Level Defect Screening

• Packaging: significant contributor to product cost

• Wafer-level testing ⇒ early defect screening
 • Results in lower packaging cost

• Packaging cost proportional to number of pins in the die

• Current packaging cost per pin exceed the cost of silicon per sq-mm [*]

• Increasing packaging cost highlight the need to reduce the cost by effective screening at wafer level

Motivation: Wafer-Level Defect Screening

- Packaging: significant contributor to product cost

- Wafer-level testing ⇒ early defect screening
 - Results in lower packaging cost

- Packaging cost proportional number of pins in the die

- Current packaging cost per pin exceed the cost of silicon per sq-mm [*]

 - ITRS 2005: Current Packaging Cost 0.26 – 2.34 ¢/pin
 - Maximum pin/die : 140-990

Motivation: Wafer-Level Defect Screening

• Packaging: significant contributor to product cost

• Wafer-level testing ⇒ early defect screening
 • Results in lower packaging cost

• Packaging cost proportional to number of pins in the die

• Current packaging cost per pin exceed the cost of silicon per sq-mm [*]

• Increasing packaging cost highlight the need to reduce the cost by effective screening at wafer level

Challenges: Wafer-Level Mixed-Signal Test

Challenges

- Measurement inaccuracies: analog cores tested in a DSP based mixed-signal test environment
- The problem is further aggravated:
 - Noisy DC power supply lines
 - Improper grounding of the wafer probe
 - Improper noise shielding of the wafer probe station
- Test and characterization extremely difficult
- Leads to high yield loss (undesirable)
Challenges: Wafer-Level Mixed-Signal Test

Wafer-level defect screening- mixed-signal

- Test methods for analog circuits using low cost digital testers exist
 - Explicit measurements of static and dynamic parameters
 - Wafer-level test environment: yield loss due to inaccurate measurements
 - Use of a mixed-signal ATE: nullify the cost savings due to packaging

- Need for a robust defect screening technique using digital testers for mixed-signal SoCs at the wafer-level
Mixed-Signal Test Data Path

- Digitally compliant mixed-signal test data path in an example SoC
Signature Analysis Based Defect Screening

Signature Analysis
Output response of the circuit compared with a “pre-determined” acceptable signature: make a pass/fail decision
Signature Analysis Based Defect Screening

• Acceptable signature: *hard to derive at wafer-sort*

• Defect screening based on outlier analysis
 – Extensively used for testing digital circuits based on IDDQ tests
 – Signature in the form of supply current information

• Spectral based testing
 – Signature spread over multiple data points constituting the spectrum

• Signature analysis technique necessary to encode this information into a single parameter for each core
Signature Analysis

ADC/DAC pairs under test

Determine characteristic spectra

Defect Screening Technique?

GSBC

Pre-determined Golden-Signature

Determine Eigen Signature

MSBC

Determine correlation parameter

Characterization Data/ Module Yield Information

Test Signature Classification

Pass/Fail Information
Method 1: Mean Signature Based Correlation (MSBC)

- MSBC
 - Sensitivities to the change in shape of the spectrum from the Eigen Signature determined using correlation parameter
 - Eigen signature: *not pre-determined*
The characteristic spectrum \((X_i)\) of the \(i^{th}\) core (in a batch of \(m\) cores) under test \(\rightarrow\) obtained using a P-point FFT and represented as:
\[
X_i = \{x_{i1}, x_{i2}, \ldots, x_{iP}\}, \quad \forall i, 1 \leq i \leq m
\]

Determine: Eigen Signature

Eigen Signature \(E\) \(\rightarrow\) set of averages of the spectra of \(m\) identical cores:
\[
E = \left\{ \frac{\sum_{i=1}^{m} x_{i1}}{m}, \frac{\sum_{i=1}^{m} x_{i2}}{m}, \ldots, \frac{\sum_{i=1}^{m} x_{iP}}{m} \right\}
\]

Correlation

Correlation between the Eigen spectrum \((E)\) and the spectrum of the core under test \((X_i)\) can be defined as:
\[
\text{corr} (X_i, E) = \frac{\sum_{j=1}^{P} (x_{ij} - \bar{X}_i)(\frac{\sum_{i=1}^{m} x_{ij}}{m} - \bar{E})}{\left[\sum_{j=1}^{P} (x_{ij} - \bar{X}_i)^2 \sum_{i=1}^{m} (\frac{x_{ij} - \bar{E}}{m})^2 \right]^{1/2}}
\]

Decision (Pass/Fail)

- Characterization data \(\rightarrow\) Information on expected yield \((Y_{\%})\)
- Modular Testing \(\rightarrow\) Statistical binning \(\rightarrow\) information on expected yield per module
- Information used to make a pass/fail decision on the batch of \(m\) dies
Method 2: Golden Signature Based Correlation (GSBC)

GSBC

Sensitivities to change in shape of the spectrum from the Eigen Signature determined using correlation parameter

- Eigen signature: *pre-determined*
Test Flow: GSBC

1. **Determine: Eigen Signature**
 - A golden-signature spectrum is obtained \textit{a priori}, by assuming ideal and fault-free operating conditions for the circuit under test.
 - Pre-determined golden signature used as Eigen signature

2. **Spectrum: Acquisition**
 - The characteristic spectrum (X_i) of the i^{th} core (in a batch of m cores) under test \(\rightarrow\) obtained using a P-point FFT and represented as:
 \[X_i = \{x_{i1}, x_{i2}, \ldots, x_{ip}\}, \quad \forall i, 1 \leq i \leq m\]

3. **Correlation**
 - Correlation parameter between the Eigen spectrum (E) and the spectrum of the core under test (X_i) obtained

4. **Decision (Pass/Fail)**
 - Characterization data: Information on expected yield ($Y\%$)
 - Modular Testing & Statistical binning \(\Rightarrow\) information on expected yield per module
 - Information used to make a pass/fail decision on the batch of m dies
Experimental Environment

Behavioral model: Flash type
ADC in MATLAB

- Low yield- 60%
- Medium yield- 75%
- High yield- 90%

Fault Injection
- Failure Type: Hard and Soft failures
- Hard failures: modeled randomly as resistive opens and broken lines in the comparator n/w
- Soft failures: modeled by varying the standard deviation of resistor values and offset voltages: randomly inject soft faults
Experimental Environment

- Low yield: 60%
- Medium yield: 75%
- High yield: 90%

Behavioral model: Flash type ADC in MATLAB

Test: a
- Determine: correlation parameter for each unique data converter
 - 1024 and 4096 point FFT
- Determine the number of circuits that pass the test
- Determine the number of circuits that fail the test
Experimental Environment

- Independently determine DNL
- Bin data converters as
 - Fault-free: $0 \leq DNL \leq 0.5$
 - Marginally faulty: $0.5 \leq DNL \leq 1$
 - Moderately faulty: $1 \leq DNL \leq 2$
 - Grossly faulty: $DNL > 2$
- Determine the number of faulty circuits that pass the test: F_{pass}
- Determine the number of good circuits that fail the test: G_{fail}

Behavioral model: Flash type ADC in MATLAB

Low yield- 60%

Medium yield- 75%

High yield- 90%
Experimental Environment

Behavioral model: Flash type ADC in MATLAB

- Low yield- 60%
- Medium yield- 75%
- High yield- 90%

- Determine yield loss = G_{fail} / G, where G is number of good circuits
- Determine test escape = $F_{pass} / (N-G)$, where N is total number of circuits
Experimental Results: MSBC

- Gross Failures: Negligible/zero test escape rate
- Implies most gross failures easily detected

![Bar chart showing test escape percentages for different scenarios.

- Test Escapes: Marginal Failures
- Test Escapes: Moderate Failures
- Test Escapes: Gross Failures

Test Escape (%)

1024-LY 4096-LY 1024-MY 4096-MY 1024-HY 4096-HY

Test Escape (%)
Experimental Results: MSBC

- Significant percentage of marginal failures result in test escapes
- 33-92% of the moderate fails are detected

Yield loss minimal << 1% in all cases
Experimental Results: GSBC

- Gross Failures: Negligible/zero test escape rate
- Implies most gross failures easily detected
Experimental Results: GSBC

- Significant percentage of marginal failures result in test escapes
- 26-92% of the moderate fails are detected

Yield loss minimal < 1.2% in all cases
Cost Model

Cost Model: Purpose

- Evaluate effectiveness of wafer-level testing
- Quantify impact on cost
Cost Model

Correction Factors

- Test Escape
 - At wafer level impacts packaging cost
 - Test Escape (analog cores): β
 - Test Escape (digital cores): θ_{n^*}
 - SoC Test Escape: $1 - (1 - \theta_{n^*}) \cdot (1 - \beta)$

- Yield Loss is undesirable ⇒ Increased cost
- Wafer Yield Loss (analog cores): WYL_a
- Wafer Yield Loss (digital cores): WYL_d
- SoC Test Escape: $1 - (1 - WYL_d)(1 - WYL_a)$
Cost Model

- \(f_{c_n}\): Fault Coverage when full suite of patterns applied
- \(f_{c_n^*}\): Fault Coverage when subset of test suite applied

\[
\theta_{n^*} = \frac{(f_{c_n} - f_{c_n^*})}{f_{c_n}}
\]

\[0 \leq n^* \leq n\]
Cost Model

Statistical Events: Test Process

- T^+: Event of a Test Pass
- T^-: Event of a Test Fail
- D^+: Event of a Good Die
- D^-: Event of a Faulty Die

Cost Model Components:

- $P(T^+ | D^-)$: Test Escape
- $P(T^+ | D^+)$: Correct Classification
- $P(T^- | D^+)$: Wafer Yield Loss
- $P(T^- | D^-)$: Correct Defect Screening
Cost Components

\[C_{\text{wap}}^{\text{cost}} = (N \cdot t_{\text{ap}} \cdot c_{\text{ap}}) + N \cdot P + (N \cdot A_{\text{die}} \cdot C_{\text{sil}}) \]

Test Cost

Packaging Cost

Cost of Silicon

\[C_{\text{wap}}^{\text{cost}} = (N \cdot t_{w} \cdot c_{w}) + P(T^\star) \cdot N \cdot P + (P(T^\star) \cdot N \cdot t_{\text{ap}} \cdot c_{\text{ap}}) + (N \cdot A_{\text{die}} \cdot C_{\text{sil}}) \]
Cost Saving

Incorporating Correction Factors: Analytical Framework

\[P(T^+) = P(T^+ | D^+) P(D^+) + P(T^+ | D^-) P(D^-) \]
\[P(T^-) = P(T^- | D^+) P(D^+) + P(T^- | D^-) P(D^-) \]
\[P(T^+) = 1 - P(T^-) \]
\[P(T^+ | D^+) = \frac{1 - P(T^-) - (P(T^+ | D^-) P(D^-))}{P(D^+)} \]

Cost Savings/Die

\[\delta C = \frac{C_{oc_{ap}}}{(N \cdot Y)} - \frac{C_{oc_{wap}}}{N \cdot Y \cdot P(T^+ | D^+)} \]
Analysis Framework

- Mixed-Signal SoC consists of:
 - Flattened section of digital logic → industrial ASIC K
 - Pair of identical data converters → identical bit resolution

- Packaging cost: derived from published data [*], varied with size of die

- Three typical die sizes considered – (10,40,120) mm²

- Cost of silicon: $0.1/ mm²[*]

[*] International Technology Roadmap for Semiconductors: Assembly and Packaging, 2005
[*] http://www.mosis.org
Quantitative Analysis

- Distributions of cost savings for Small Die
- Packaging Costs (a) $1 (b) $3 and (c) $5

- Tester Cost : $0.30/sec
- ASIC Chip K : Tested with 4046 test patterns
- 50% of test escapes are due to mixed-signal cores
- Yield Distribution : Adjusted to die size
Quantitative Analysis

- Tester Cost: $0.30/sec
- ASIC Chip K: Tested with 4046 test patterns
- Test Escape: 50% for mixed-signal cores
- Yield Distribution: Adjusted to die size

- Distributions of cost savings for Medium Die
- Packaging Costs (a) $3 (b) $5 and (c) $7
Quantitative Analysis

- Distributions of cost savings for Large Die
- Packaging Costs (a) $5 (b) $7 and (c) $9

- Tester Cost : $0.30/sec
- ASIC Chip K : Tested with 4046 test patterns
- Test Escape : 50% for mixed-signal cores
- Yield Distribution : Adjusted to die size
Conclusions

• Wafer-level defect screening technique suited for commercial “Big-D Small-A” mixed-signal SoCs
 – Using low cost digital tester
 – Significant percentage of moderate (26-92%) and gross failures (45-100%) can be screened at the wafer-level maintaining yield loss to a minimum (~1%)

• Cost model for a generic mixed-signal SoC
 – Benefits of wafer-level tests illustrated