Xbox360™ Front Side Bus – A 21.6 GB/s End-to-End Interface Design

David Siljenberg, Steve Baumgartner, Tim Buchholtz, Mark Maxson, Trevor Timpane
IBM Systems & Technology Group
Jeff Johnson
Cadence Design Systems, Inc.

January 23-26, 2007
Outline

- FSB & PHY Overview
 - CPU PHY
 - CPU Chip Description
 - GPU PHY Issues
 - GPU PHY Transmit Interface
 - GPU PHY High Speed Clock Interface
 - GPU PHY Development Logistics
- Physical Channel
 - Modeling and Simulation Approach
 - Impact of Reflections
- Bus Performance Measurements
- Summary & Conclusions
Front Side Bus (FSB) Overview

- FSB is the only interface to the Central Processing Unit (CPU)
- It connects to the Graphics Processing Unit (GPU)
- IBM owned the FSB end to end

The PHY contains the circuits that interface to the physical channel

Physical channel
- Chip package
- Circuit board wires
FSB Overview

- Point to point differential link
- 2 bytes in each direction
- Each bit lane runs at 5.4 Gb/s
- Source synchronous – clock is forwarded with the data for simple clock recovery
- The data is not coded for low latency
- Flag signal is used to delineate a packet
PHY Receiver

- Half rate (2.7 GHz) architecture
- Receives the serial data and forwarded clock
 - Clock receiver forwards clock copies to 9 data slices.
- Data slice phase rotators adjust the forwarded clock phase to correctly latch the data
- Deserializes the data to 4 bit parallel data in the CPU and 8 bit parallel data in the GPU
PHY Transmitter

- Low latency serializer architecture
- Serializes the 4 bit parallel data for the CPU and 8 bit parallel data for the GPU
- Clock synchronizer picks the phase of the half rate clock to latch the 4 bit word correctly.
 - Eliminates the need for a FIFO and reduces latency
 - Requires careful design of the PHY clock and ASIC clock as a system.
CPU Chip Photo

- 3-Way Symmetric Multi-Processor
 - IBM PowerPC™ Architecture
 - 3.2GHz CPU clock
- FSB – 21.6 GByte/sec aggregate bandwidth
- 90 nm CMOS SOI (silicon on insulator)
GPU PHY

- GPU – TSMC 90 nm bulk CMOS
- The GPU PHY uses the same architecture as the CPU except that the parallel data is 8 bits wide vs. 4 bits wide.
- The GPU FSB PHY was an integration challenge.
 - The GPU was designed by a graphics chip company.
 - The PHY designed by Cadence Design Systems.
 - The FSB PLL was designed by a PLL design company.
- GPU PHY Transmit Interface
 - As with CPU PHY a clock alignment circuit is used instead of a FIFO for lower latency.
 - Clock sync is a challenge because of 2 clock paths from 3rd parties.
 - Classic timing methodologies didn’t apply.
 - Worst setup corner wasn’t the slow corner.
 - Worst hold corner wasn’t the fast corner.
Clock Alignment Block Diagram

Clock Alignment block picks best 2.7GHz clock edge at power up.

Excessive clock tree drift after power up will cause the serializer to load bad data.
GPU PHY Design Considerations

■ GPU PHY High Speed Clock Interface
 ■ 5.4 GHz clock is provided from the PLL to the PHY for low jitter.
 ■ To assure correct operation the PHY developers received a PLL model and the PLL developers received a PHY model.
 ■ This included relevant circuits and wiring.
 ■ Identical circuits and references were used in the PHY & PLL 5.4 GHz paths.

■ Other GPU PHY Development Logistics
 ■ Establishing communications and legal permissions across 4 companies was a challenge.
 ■ Example: Considerable communication was needed between the 4 companies to assure proper start up occurs for the GPU/CPU system.
Physical Channel

- High volume low cost packaging from multiple vendors
- 2 signal wiring layers on the board and GPU package
- 1 signal wiring layer on the CPU package
- Low cost means that the tolerances can’t be tight
- Table specifies worst case values

<table>
<thead>
<tr>
<th>Electrical Characteristic</th>
<th>Chip Carrier Wiring</th>
<th>PCB Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Impedance</td>
<td>100 +/- 18 Ohms</td>
<td>100 +/- 15 Ohms</td>
</tr>
<tr>
<td>Differential Attenuation</td>
<td>-1.7dB @ fBaud/2</td>
<td>-1.5dB @ fBaud/2</td>
</tr>
<tr>
<td>Return Loss</td>
<td>-10dB @ 0.75*fBaud</td>
<td>NA</td>
</tr>
<tr>
<td>Pair-to-pair Isolation</td>
<td>-30dB @ 0.75*fBaud-</td>
<td>-30dB @ 0.75*fBaud</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>18mm</td>
<td>50.8mm</td>
</tr>
</tbody>
</table>
Physical Channel

5 reflection interfaces

GPU package

GPU termination

Printed Circuit Board (PCB)

CPU termination

CPU package

GPU 90nm TSMC

3/2/3 FCPBGA

WN CPU 90nm 10ke SOI

2/2/2 FCPBGA

System Card

2S2P
Model to Hardware Correlation

- Simulation and measurement of the entire channel, chip solder ball to chip solder ball.
Model Correlation

- S-params from VNA measurements
- RLG model simulated with PowerSPICE™
- S-params simulated w/ Spectre™
- S-params simulated with another commercial SPICE simulator
Impedance Discontinuities

- Short channel and low attenuation means reflections keep bouncing back & forth
- Some reflections with some data patterns interfere destructively
- Spice doesn’t simulate sufficient data pattern lengths

<table>
<thead>
<tr>
<th></th>
<th>Channel Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Driver return loss</td>
<td></td>
</tr>
<tr>
<td>Driver package</td>
<td>85.4Ω</td>
</tr>
<tr>
<td>PCB</td>
<td>85.0Ω</td>
</tr>
<tr>
<td>Receiver package</td>
<td>85.4Ω</td>
</tr>
<tr>
<td>Receive return loss</td>
<td></td>
</tr>
</tbody>
</table>

- Return losses are high due to high customer ESD requirements and SOI ESD capabilities.
- Some paths were tuned to reduce the reflection impact.
Eye Opening Variation due to Reflections

- IBM communications based link simulator tool used to simulate millions of bits to find worst case data patterns.
- Spice simulates 100’s of bits.
- 2^5 Impedance corners
- Trace lengths from 0.5 to 4 inches
Simulated vs. Measured Eye Diagram

Simulated TX Eye

Measured TX Eye

Non-ideal impedance combination

Nominal impedances

FSB – Realistic worst-case eye

185 ps
Packet Error Rate vs. Clock Position

• Phase rotators are manually adjusted
• The packet error rate is plotted vs. clock position
• This is done on a product level system board without any special hardware
• Errors are checked with the existing error checking logic in the link layer
Summary & Conclusions

- The entire on chip clock paths were analyzed as a system to enable a low latency transmit architecture.
- In-system error rate curve measurement enabled characterization and verification of production hardware.
- Reflections are a large detractor for short links.
- It was important to have one FSB link owner.
 - This enabled a robust link design over large channel variation.
 - Over 10 million units have shipped as of year end 2006.