Asia and South Pacific Design Automation Conference 2008

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning

Feng Wang, Xiaoxia Wu, Yuan Xie

The Pennsylvania State University Department of Computer Science & Engineering

Outline

Introduction

- Process Variation and its impact on HLS
- Related work

Variability-Driven Module Selection

- Performance/Power yield
- Design Time Approach
- Post-silicon Tuning Approach
- The combined approach
- Experimental Results
- Conclusion

What is the problem?

- Process variation has become a prominent concern as technology scales
- Device and interconnect process variations increase with shrinking feature sizes

(Source: K. Roy DAC05)

Impact on High-Level Synthesis

- HLS schedules operations at difference clock cycle and maps them to function units (FU).
- Traditionally, each FU has a fixed latency value.

CC1

CC2

CC3

CC4

However, under process variation....

Old Solutions

Worst-case analysis:

-- much larger variation -- very pessimistic

Require a shift in the design paradigm, from today's deterministic to probabilistic design

Probabilistic Design Paradigm

A holistic design paradigm shift to statistical design

Related work

- High-level synthesis is a well-studied problem
 - □ Low power: T. Kim TVLSI03, J. Cong ASPDAC08
 - Thermal: Seda ICCAD 06
- Physical information can also be integrated into HLS
 H. Zhou DAC05
- Industry success story:
 - □ HLS tool "Catapult" (Mentor Graphics)
 - □ BlueSpec inc.
 - AutoESL
- Variation-aware HLS
 - □ W. Huang ICCAD06, T. Kim ICCAD07, S. P. Mohanty VLSID 07

variation-aware high level synthesis is still in its infancy

Outline

Introduction

Process Variation and its impact on HLS

Related work

Variability-Driven Module Selection

Performance/Power yield

Design Time Approach

Post-silicon Tuning Approach

 $\hfill\square$ The combined approach

Experimental Results

Conclusion

Performance Analysis/Yield

Performance yield: The probability that the synthesis hardware can work at a particular clock rate

A functional unit: $T_i = a0_i + a1_i \Delta V_{th} + a2_i \Delta l + a3_i V_{SB}$

Synthesized DFG: Sum operation and Max operation

Performance Yield of the DFG:

$$\begin{aligned} Yield_{delay}(DFG) &= \Pr ob(T_{\max} \leq T_{clock} \left| constraint s \right) \\ Yield_{delay} &= \prod_{i=1}^{M} Yield_{delay}(b_i) \\ \Delta Yield_{delay} &= \prod_{i=1, i \neq j}^{M} Yield_{delay}(b_i) \times \Delta Yield_{delay(b_j)} \end{aligned}$$

Power Analysis/Yield

Power yield: The probability that the total power less than the power limit

A functional unit: $P_i = \exp(b0_i + b1_i \Delta V_{th} + b2_i \Delta l + b3_i V_{SB})$

Synthesized DFG: Sum of the random variables

Power Yield of the DFG:

 $\begin{aligned} &Yield_{power}(DFG) = \Pr ob(P_{tot} \leq P_{target} | constraint s) \\ &P_{DFG}^{new} = P_{DFG}^{old} - P_{opt_k}^{old} + P_{opt_k}^{new} \\ &\Delta Yield = Yield(P_{DFG}^{new}) - Yield(P_{DFG}^{old}) \end{aligned}$

Design Time Approach- example

<u>Worst case analysis</u>: Adder2 is faster <u>CCT=T1</u>: <u>Adder 1 is better</u> <u>CCT=T2</u>: <u>Adder 2 is better</u> <u>CCT=T3</u>: Both Adders have the same yield (100%)

Design Time Approach- algorithm

- **Input:** initial scheduled DFG, constraints, module library
- Output: a synthesized DFG with optimized power and satisfied performance constraints

Post Silicon Tuning

- Tuning chips after manufacturing, body biasing techniques by controlling threshold voltage
 - Reverse body biasing (RBB) reduces leakage power at the expense of slowing down circuits
 - Forward body biasing (FBB) improves performance at the expense of higher leakage power

Post Silicon tuning Approach

Decide the optimal body biasing for a module selection decision such that the power yield is maximized under the performance constraints.

minimize: P_{sttot} subject to: $P(T_{max} \leq T_{clock} | constraint s) \geq \alpha$ second order conic programminimize: $(a1+b*a2)^T s$ subject to: $b^T s + \phi^{-1}(\alpha)(s^T \sum s)^{1/2} \leq T_{limit}$ $c^T(s-s_{ini}) \leq \varepsilon$

vector s is to be determined, then Vsb

Joint optimization Approach

```
JointOpt (ISDFG, constraints, Library)
```

While (ΔY ield > ε and meet constraints){

Design time module selection under current body bias;
 Sequential Conic Optimization;

- 4.}
- □ The initial body bias is zero
- Maximize the power yield under performance yield constraints
- □ Iterates until no improvement can be obtained
- Output a synthesized DFG with optimal body bias

Outline

Introduction

Process Variation and its impact on HLS

Related work

Variability-Driven Module Selection

- Performance/Power yield
- Design Time Approach
- Post-silicon Tuning Approach
- $\hfill\square$ The combined approach
- Experimental Results
- Conclusion

Experiment set up

- Algorithms in C++
- 90nm technology
- Six high level synthesis benchmarks:
 - □ A 16-point symmetric FIR filter (FF)
 - □ A 16-point elliptic wave filter (EWF)
 - An autoregressive lattice filter (ARF)
 - An algorithm for computing discrete cosine transform (DCT)
 - \Box A differential equation solver (DES)
 - □ An IIR filter (IIR)

Power Yield Gain

Design Time Approach vs. worst case
 90% performance yield constraint 34% power yield

Power Yield Results

Joint Approach vs. Design time only □ 99% performance yield constraint

38% power yield

				impro	vement
Name	DT	JTS	JTS-DT	(JTS-DT)/DT	
AR	47%	86%	39%	83%	
DCT	60%	85%	25%	42%	1
DES	76%	90%	14%	18%	1
EWF	79%	90%	11%	14%	т
FF	75%	92%	17%	23%	тѕ
IIR	58%	85%	27%	47%	
Average	66%	88%	22%	38%	
10% -					
0%					
AP	oc'	OFFS E	NF FF	IIR Jerage	
				P'	

Conclusion

- As technology scales, process variation has increasing impact on performance and power variations
- Traditional synthesis techniques belong to design time approaches
- We propose a yield driven module selection with joint design time optimization and post-silicon tuning

Compare with Previous Works

- Only consider timing variability
- Every step is still deterministic
- Design time approach