

#### Behavioral Synthesis with Activating Unused Flip-Flops for Reducing Glitch Power in FPGA

Cheng-Tao Hsieh, Jason Cong, Zhiru Zhang, and Shih-Chieh Chang

National Tsing Hua University, Taiwan University of California, Los Angeles, USA

# Outline

- Firewall registers in FPGA
- Functional error problem
- Low power binding and scheduling
- Experimental results and conclusions

#### Power in FPGA

#### Interconnect dominates FPGA power.

- [F. Li, etc. in International Symposium on FPGA 2003]
- [L. Shang, etc. International Symposium on FPGA 2002]

• We modify a design's architecture to reduce certain interconnect's power.

#### **FSMD** Architecture

#### • Finite state machine with data path (FSMD).



# **FSMD** Architecture

- Finite state machine with data path (FSMD).
- Focus on interconnect power between the output of functional units and the input of registers.



# Low Power FSMD

- Insert firewall registers on boundary output signals.
- Glitches occur on a much smaller capacitance in FPGA.



#### **FPGA Implementation**

 A k-pin net (k > 2) is implemented using programmable interconnect which has large capacitance.



#### **Firewall Register**

• Firewall registers can be implemented using registered mode.



Registered mode of configuration





## **Power Profile**

• Up to 36% of the total dynamic power in the Xilinx Virtex-II FPGA platform.





- The reasons:
  - Large glitches
  - Well-optimized common arithmetic units
    - Dedicated 18x18-bit multiplier blocks

| DIF      | 21% |
|----------|-----|
| LEE      | 16% |
| WANG     | 15% |
| FEIG_DCT | 29% |

# **Functional Error Problem**

- Firewall register delays data propagation for one cycle.
- We intelligently schedule and bind to avoid hazards.



Partial scheduling



Partial data path

# **Previous Work**

- Activate abundant flip-flops to block glitches → pipeline or retiming.
- Perform optimization on gate-level netlists or physical circuits.
  - Accurate
  - But, not able to solve hazards by scheduling and binding.

## Contribution

- Extend the solution space by one additional dimension of using/not using firewall register.
- provide methods to guide the insertion of firewall registers in the behavioral synthesis stage
- We have incorporated our techniques into xPilot, introduced by UCLA.

# Outline

- Firewall registers in FPGA
- Functional error problem
- Low power binding and scheduling
- Experimental results and conclusions

#### Forwarding

• Use forwarding to solve a partial of functional errors.



Partial data path

#### Forwarding to Solve Hazards Completely?

- The consuming is a multi-cycle operation.
- During the reading, an operation writes its result to the firewall register.
  - → Write-After-Read (WAR) hazard



# **Only-one Firewall Register**

- Multiple firewall registers cannot use a registered gate.
- No WAR hazards on normal registers.





# **Formal Description**

- For a dataflow (*u*, *v*), a WAR hazard occurs if and only if
  - *u* and *v* are scheduled at consecutive cycles
  - ∃ w such that w and u are bound to the same functional unit, and w produces results between cycles i and i+k-2.
- Implies that our method is easily applied.



# Outline

- Firewall registers in FPGA
- Functional error problem
- Low power binding and scheduling
- Experimental results and conclusions

## Difficulty of Binding with Firewall Registers

- Goal is to minimize the power.
- Consider switching and firewall register simultaneously.

#### **Network Flow Problem**

- Reduce to min-cost N-flow problem.
- Previous work: network flow problem to minimize switching activity.





# Modifying Network

- 1. Show the two conditions, FR and non-FR, of a functional unit.
- 2. Exclusive of FR and non-FR conditions.
- 3. Guarantee a flow must stay in either FR or non-FR.

# Network for Switching and Firewall registers





# Low-Power Scheduling

- In scheduling, the goal is not to minimize the power.
- We maximize the insertion of firewall registers.

#### Slack

- Slack
  - Zero slack: a hazard potentially occurs.
  - Positive slack: a hazard never occurs.
- Because of latency constraint, this problem is traditionally called the timing budgeting problem.



# Outline

- Firewall registers in FPGA
- Functional error problem
- Low power binding and scheduling
- Experimental results and conclusions

#### Incorporating Firewall Register Method into xPilot



## **Experimental Flow**



Device

- XC2V500 in Xilinx's Virtex-II family
- XC2V1500 for benchmark CHEM
- Clock cycle

- 15ns

# **Experimental Results**

| Design | ADD  | MUL | Conventional | Conventional +<br>FR | FR-supporting |  |
|--------|------|-----|--------------|----------------------|---------------|--|
|        | /506 |     | Power (mW)   | Power (mW)           | Power (mW)    |  |
| ARAI   | 6    | 1   | 146          | 128                  | 119           |  |
| DIF    | 6    | 2   | 174          | 155                  | 126           |  |
| DIT    | 7    | 3   | 199          | 202                  | 140           |  |
| LEE    | 6    | 4   | 174          | 158                  | 115           |  |
| MCM    | 13   | 6   | 241          | 243                  | 220           |  |
| WANG   | 5    | 4   | 204          | 144                  | 133           |  |
| CHEM   | 33   | 33  | 719          | 553                  | 556           |  |
| DIR    | 11   | 12  | 275          | 195                  | 160           |  |
| HONDA  | 9    | 10  | 223          | 175                  | 166           |  |
| PR     | 5    | 3   | 137          | 101                  | 86            |  |
| Avg.   |      |     | 1            | 0.84                 | 0.72          |  |

# **Experimental Results**

| Design | ADD<br>/SUB | MUL | Conventional |       | Conventional +<br>FR |       | FR-supporting |       |
|--------|-------------|-----|--------------|-------|----------------------|-------|---------------|-------|
|        |             |     | FF           | Slice | FF                   | Slice | FF            | Slice |
| ARAI   | 6           | 1   | 676          | 833   | 772                  | 828   | 788           | 919   |
| DIF    | 6           | 2   | 788          | 987   | 852                  | 988   | 916           | 1029  |
| DIT    | 7           | 3   | 932          | 1214  | 1012                 | 1173  | 1076          | 1296  |
| LEE    | 6           | 4   | 1028         | 1126  | 1092                 | 1132  | 1172          | 1156  |
| MCM    | 13          | 6   | 1652         | 2085  | 1956                 | 2261  | 1940          | 2225  |
| WANG   | 5           | 4   | 836          | 998   | 916                  | 1025  | 980           | 1065  |
| CHEM   | 33          | 33  | 5076         | 6063  | 5892                 | 6126  | 5716          | 5330  |
| DIR    | 11          | 12  | 1732         | 2091  | 2084                 | 2156  | 2100          | 2152  |
| HONDA  | 9           | 10  | 1364         | 1768  | 1668                 | 1741  | 1668          | 1764  |
| PR     | 5           | 3   | 548          | 859   | 612                  | 872   | 676           | 850   |
| Avg.   |             |     | 1            | 1     | 1.13                 | 1.01  | 1.18          | 1.04  |

#### Conclusions

• Firewall registers

• To avoid WAR hazards, propose an FRsupporting behavioral synthesis flow.

• The experimental results show that the reduction in dynamic power is around 28%.