



# Scheduling with Integer Time Budgeting for Low-Power Optimization

#### Wei Jiang, Zhiru Zhang, Miodrag Potkonjak and Jason Cong

Computer Science Department University of California, Los Angeles



Supported by NSF, SRC.

# Outline

- u Introduction to integer time budgeting (ITB) problem
- u Low-power scheduling
- u Experimental results
- u Conclusions and future work

# Integer Time Budgeting (ITB) Problem

- u Definition
  - § Slack: the amount of extra delay that each component (either a small gate or a large module) of a design can tolerate without violating the given timing constraint
- u Time budgeting problem
  - § The problem of distributing the slacks to different modules of a design to optimize some objectives (such as area, power)
  - § Example: reduce area/power by using slower adders
- u Integer time budgeting problem
  - § The slacks must be integral values
  - § Applications: scheduling, gate sizing, interconnect planning



Slacks:  $S_1=S_2=S_3=3ns$ 

# Motivation

u Maximizing sum of weighted slack might be suboptimal for power optimization



## Related Work

- u Network-flow-based algorithm
  - § A Unified Theory of Time Budget Management, [Ghiasi et al., ICCAD'04]
    - Can solve the ITB problem optimally with linear objective function
  - § Design Closure Driven Delay Relaxation Based on Convex Cost Network Flow [Lin et al., DATE'07]
    - Can handle convex objective function
- u Mathematical programming approach
  - § A Mathematical Formulation of Integer Time Budgeting Problem [Cong et al., TECHCON'07]
  - § Handles convex objective function
  - § Intuitive and easy to be incorporated into systems with application-specific design constraints

#### A Mathematical Formulation of Time Budgeting Problem



Power (*mW*) 100 50 30 1 2 3 4 Delay (*ns*)

Directed Acyclic Graph: G = (V, E)

- $s_i$ : start time of node  $v_i$
- $d_i$ : minimum latency of  $v_i$
- $\boldsymbol{b_i}$ : time budget at node  $v_i$

Linearly constrained separable convex optimization problem

 $Each f_i$  is a single-variable convex function

$$Min \sum_{i=1}^{|V|} f_i(b_i)$$
  

$$Subject \ to:$$
  

$$s_i + b_i \le s_j \quad e(i, j) \in E$$
  

$$b_i \ge d_i \quad \forall v_i \in V$$
  

$$s_i \ge 0 \quad \forall v_i \in PIs$$
  

$$s_i \le T \quad \forall v_i \in POs$$

### Totally Unimodular Constraint Matrix



LEMMA 1 (GHOUILA-HOURI [6]). A  $0, \pm 1$  matrix A is totally unimodular if and only if each subset J of the columns can be partitioned into two classes  $J_1$  and  $J_2$  such that for each row i, we have  $|\sum_{j\in J_1} a_{ij} - \sum_{j\in J_2} a_{ij}| \leq 1$ .

$$J_1 = \{ j \in J \mid (j > n/2) \land (\exists_i a_{ij} = 1) \land (j - n/2 \in J) \}$$
  
$$J_2 = J - J_1$$

Theorem 1: <u>The ITB constraint</u> <u>matrix is a TUM</u>

## **Optimizing Separable Convex Objective**

LEMMA 2 (HOCHBAUM AND SHANTHIKUMAR [7]). The linearly constrained, integer separable convex programming problem can be solved optimally in polynomial time with a totally unimodular constraint matrix.



THEOREM 2 (BASED ON MILLER AND WOLSEY [12]). If constraint matrix A is totally unimodular, and the objective is a separable piecewise-linear function, we can solve the integer convex separable optimization problem optimally in polynomial time using linear programming relaxation.

# Outline

- u Introduction to integer time budgeting (ITB) problem
- u Low-power scheduling
- u Experimental results
- u Conclusions and future work

# Application to Low-Power Scheduling

u Motivation

§ Scheduling and time budgeting are highly correlated

u Problem

§ Consider the scheduling and budgeting problem together to minimize the average power under time constraint *T* 

u Main idea

§ Integrate our ITB problem with the SDC based scheduling [Cong and Zhang, An efficient and Versatile Scheduling Algorithm Based on SDC Formulation, DAC'06]

## Low-power Scheduling Problem Formulation

- u Given:
  - § A data flow graph G
  - § A latency constraint T
  - § A set of optional scheduling constraints including cycle time constraint, relative timing constraints and resource constraints.
  - § A set of power-delay tradeoff curves for each type of operation such as addition, multiplication, etc.
- u Objective
  - § Get a valid scheduling which satisfies all the constraints and minimize the total power





# Low-Power Scheduling

- u Each node  $v_i \in V_{op}$  is associated with a node budgeting variable bv( $v_i$ ) which denotes the # of clock cycles that operation  $v_i$  lasts in the final schedule
- u Adjust the following constraints
  - § Data dependence constraint
    - $\forall (u, v) \in E_d$ :  $SV_{beg}(u) + bv(u) \le SV_{beg}(v)$
  - § Latency constraint T
    - $\forall v \in V_{op}$ :  $SV_{beg}(u) + bv(v) \le T$
  - § Throughput constraint with initiation interval *II* 
    - $\forall v \in V_{op} : bv(v) \le II$
- u Optimizing total node power

$$Min \, \sum_{i=1}^{|V_{op}|} pw_{op(v_i)}(bv(v_i))$$

§ We can optimally minimize the total node power in polynomial time

# Consideration of Resource Binding

u Optimizing total FU power Min  $\Sigma_{j}^{''}$ 

$$\lim \sum_{j=1}^{|F|} |f_j| * pw_{op(f_j)}(bv(f_j))$$

- § Constraint matrix is no longer totally unimodular with the requirement that:
  - all operations sharing a same function unit must have same slacks
- § The problem is NP-complete (reduction from 3-SAT)
- u Proposed heuristic
  - § First solve the continuous version and obtain the "optimal" fractional budget  $fb(v_i)$  for each node  $v_i$
  - § Perform a global rounding by minimizing the least-squares error
    - Objective function is separable convex

Min 
$$\sum_{i=1}^{|V_{op}|} (bv(v_i) - fb(v_i))^2$$

# Low-power Scheduling Flow



# Outline

- u Introduction to integer time budgeting (ITB) problem
- u Low-power scheduling
- u Experimental results
- u Conclusions and future work

C-to-



### **Experimental Results**

### – Comparison with Max Weighted Slack

u LPS: Minimize total node power

|         | Power         |               |         | Area                       |                            |         | Cycle Time    |               |        |
|---------|---------------|---------------|---------|----------------------------|----------------------------|---------|---------------|---------------|--------|
| Design  | WMS           | LPS           | Ratio   | WMS                        | LPS                        | Ratio   | WMS           | LPS           | Ratio  |
|         | ( <i>mW</i> ) | ( <i>mW</i> ) | (%)     | ( <i>um</i> <sup>2</sup> ) | ( <i>um</i> <sup>2</sup> ) | (%)     | ( <i>ps</i> ) | ( <i>ps</i> ) | (%)    |
| ARAI    | 11.7          | 9.1           | -22.22% | 31187                      | 28056                      | -10.04% | 885           | 820           | -7.34% |
| DIF     | 13.3          | 12.4          | -6.77%  | 39704                      | 38798                      | -2.28%  | 880           | 883           | +0.34% |
| DIT     | 15.7          | 14            | -10.83% | 46485                      | 44830                      | -3.56%  | 880           | 882           | +0.23% |
| LEE     | 20            | 16.1          | -19.50% | 53886                      | 48892                      | -9.27%  | 835           | 901           | +7.90% |
| MCM     | 35.9          | 26.1          | -27.30% | 87879                      | 76264                      | -13.22% | 838           | 892           | +6.44% |
| PR      | 18.4          | 16            | -13.04% | 47571                      | 44815                      | -5.79%  | 835           | 835           | +0.00% |
| Average |               |               | -16.61% |                            |                            | -7.36%  |               |               | +1.26% |

|          | Maximala |          | una la hata | اممامما        |
|----------|----------|----------|-------------|----------------|
| 11       | Maximize | maximiim | weinnie     | n siark        |
| <u>u</u> |          |          |             | <u>a sigui</u> |
|          |          |          | J           |                |

Power, area, and cycle time comparisons between WMS and LPS (Latency constraint = 1.2x the longest path length)

### Experimental Results – Considerations of Resource Sharing

- u LPS\_NRS: Minimize total node power (without considering resource sharing)
- u LPS\_RS: Minimize total function unit power (considering resource sharing)
- u ILP: ILP-based approach to directly minimize total FU power (optimal solution)



Actual power consumption

LPS\_RS is within 6% of the ILP exact approach and outperforms LPS\_NRS by 30%

### Conclusions and Future Work

### u Conclusions

 § A mathematical programming formulation of the integer time budgeting problem with great flexibility and extensibility
 § Application to low-power scheduling problem

u Future works

§ Apply our ITB formulation to other problems

### u Thanks.

#### Design Closure Driven Delay Relaxation Based on Convex Cost Network Flow [DATE07]

- u Problem formulation
  - § Design Closure Driven Delay Relaxation problem
  - § Essentially a ITB problem with convex objective function
- u Solution
  - § Transformation to a convex cost integer dual network flow problem
- u Comparison with mathematical programming (MP) approach
  - § Network flow based algorithm has a better worst-case complexity
  - § MP approach allows the utilization of the leading-edge mathematical programming solvers
  - § MP approach can be easily extended to support application specific constraints