
An Efficient Performance
Improvement Method Utilizing
Specialized Functional Units

in Behavioral Synthesis

Tsuyoshi Sadakata, and Yusuke Matsunaga
Kyusyu University, Japan

2

Motivation

• Specialized Functional Units (SFUs) (e.g. Multiply-Acc
umulator) can be designed for specific operation patterns
to achieve shorter delay and/or smaller area than casc
aded basic functional units (e.g. Multiplier & Adder)

• Introducing SFUs into behavioral synthesis can improve
synthesis results

• Because SFUs are less flexible for resource sharing,
utilizing Specialized Functional Units in behavioral synth
esis considering performance and area trade-off is a co
mplicated problem

3

Related Works
• Integer Linear Programming based Methods

– Landwehr et al, ``Oscar: optimum simultaneous schedulin
g, allocation and resource binding based on integer progr
amming’’, EuroDAC94

– Marwedel et al., ``Built-in chaining: Introducing complex c
omponents into architectural synthesis’’, ASPDAC97

• Heuristic Methods
– Corazao et al., ``Performance optimization using template

mapping for datapath-intensive high-level synthesis’’, IEE
E Trans. on CAD96

– Bringmann et al., ``Cross-level hierarchical high-level synt
hesis’’, DATE98

Long computational time can be required for large problems

Maximizing performance ignoring the increase of resources

4

Proposed Method
• A heuristic method utilizing SFUs for a simultaneo

us Module Selection, Functional Unit Allocation, an
d Scheduling problem considering performance /a
rea trade-off
– Constraint: clock cycle time & total functional unit area
– Objective: minimize # of clock cycles
– Approach

1. enumerate several feasible solutions at Module Selection
2. solve other sub-problems for each solution of Module Selection

• Main Contribution
Proposal of a novel heuristic Module Selection algorithm

to restrict enumerated solutions effectively

5

Module Selection Sub-Problem
• Enumerate several feasible Module Set Vectors satisf

ying clock cycle time & total functional unit area constra
int

)(element th for notation :][
unit type functional th of # selected :

unit types functional ofset a :
),,,(||21

i

i

FU

niimsv
in

FU
nnnmsv K=

][][|,|,,2,1
in included is

ivmsimsvFUi
vmsmsv

′≤=

⇔′
∀ L

Module Set Vector (MSV)

Inclusion Relation between MSVs

Feasible Module Set Vector (FMSV)

• Synthesis target can be implemented with the msv

• The msv satisfies given constraint

6

Proposed Module Selection Algorithm
• Only maximal FMSVs are enumerated

– maximal FMSV: no other FMSV includes the msv

• maximal FMSVs are divided into several groups based
on unit FMSVs

– unit FMSV:

⎩
⎨
⎧

≥
=

=
)1][(1
)0][(0

][
imsv
imsv

imsv
maximal

maximal
unit

　　

　　

Only FMSVs close to constraint boundary border are enumerated

For each group, minimum # of cycles is estimated with only unit FMSV

Total area

of cycles

Total area of unit
FMSV

Constraint

Estimated
value

Result obtained by
As Soon As Possible

Scheduling

From a unit FMSV
with the best

estimated value,
constant number of
maximal FMSVs are

enumerated

7

Experiment
• Effect of utilizing SFU is evaluated in two ways

– ALL: a heuristic method that enumerated all maximal FMSVs
– OUR: a heuristic method with the proposed algorithm

• Synthesis Target
– bdist2(# of operations: 43, MediaBench:MPEG2 Encoder)
– fdct(# of operations: 138, MediaBench:JPEG Encoder)

• Functional Unit Library
– Basic functional units (e.g. adder, multiplier)
– SFU

• Carry-Save Adder based construction algorithm for addition based o
perations (provided by Synopsys Module Compiler)

– All units were synthesized with Synopsys Module Compiler unde
r maximum delay constraint 3 ns or 6 ns with a cell library for HIT
ACHI 0.18um CMOS process technology provided from VDEC

• Constant number for the enumeration of maximal FMSV
s with the proposed algorithm
– 1,000

8

Experimental Results

0

5

10

15

20

25

30

35

110000 120000 130000 140000 150000 160000 170000 180000

Total area constraint (um^2)

#
 o

f
c
yc

le
s

ALL without SFUs ALL with SFUs

OUR without SFUs OUR with SFUs

of clock cycles
(bdist2, clock cycle time constraint: 6ns)

of clock cycles
(fdct, clock cycle time constraint: 6ns)

0

10

20

30

40

50

60

70

80

120000 130000 140000 150000 160000 170000 180000 190000 200000 210000 220000

Total area constraint (um^2)

o
f

c
y
c
le

s

ALL without SFUs ALL with SFUs OUR without SFUs OUR with SFUs

OUR with SFUs:
ave. 17.5%, max. 35.7% reduction

The result can be
obtained with SFUs
The result cannot be

obtained without SFUs

Computational Time Comparison
ALL with SFUs: max. 7,588 sec (bdist2), max. 8,218 sec (fdct)
OUR with SFUs: max. 149 sec (bdist2), max. 857 sec (fdct)

OUR with SFU:
ave. 10.4%, max. 15.9% reduction

9

Conclusion

• An efficient performance improvement method ut
ilizing SFUs is proposed

• Performance improvement under clock cycle tim
e and total functional unit area constraint can be
achieved in practical time with the proposed met
hod

• Experimental results show that utilizing specializ
ed functional units has achieved 13.3% on avera
ge, maximally 35.7% reduction of # of clock cycl
es within 15 minutes

10

Thank you for your attention.

