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Motivation

Leakage power consumption is expected to 
become dominant for future technologies
Techniques for reducing power consumption 
are needed that 

are adaptive to environment changes
do not require resynthesis of IP cores



Power Gating

Sleep transistor creates 
“virtual Vdd” when logic 
block is idle (sleep = 1)
Stand-by energy 
consumption is decreasing

E = T IL(Vdd) Vdd

Logic Block

sleep



Power Gating

With power gating a module is shut down 
when it is idle
Energy penalty mainly for switching from 
sleep to active – loading of the nodes back to 
normal Vdd levels
In this work we try to increase the energy 
savings by reducing the number of switches



Synchronous Dataflow Graphs

Each node represents 
computation process

constant production and 
consumption rate

executed a specific number 
of times during each 
complete cycle

Edge represents a channel 
between two actors

FIFO protocol for tokens
initial number of tokens on 

edge (delays)
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If for all edges p(e)=c(e)=1,
the graph is called unirate.



Chain-Structured Synchronous Data Flow 
Graphs

First level of hierarchy, chain-structured Synchronous 
Data Flow Graph
Each node Si reads data produced by Si-1 and produces 
data for Si+1

Each node represents a pipeline stage and can be 
executed in parallel with other nodes
Model commonly used for pipelined streaming 
applications

S0 S1 Si-1 Si Si+1 S|S| S|S|+1......



System Description

Second level: Each stage is a graph
Nodes of the graph represent hardware units (processes) that can
be independently power gated
The edges of the graph represent data flow 
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Stage Execution

The interval L-l(Si) is the slack time for the stage Si

If for a process v of stage Si power can be saved, 
the process is put to sleep mode while being idle
The number of consecutive executions of each 
stage is 1 (x=1)
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Changing the Stage Execution

The interval 3L-3l(Si) is the slack time for the stage Si
More processes of stage Si can be put in sleep mode due to 
the increased idle time
For some processes the penalty of switching mode is paid 
only once in 3L
The number of consecutive executions of stage Si is 3 (x=3)

3l(Si)

3L

Si-1

buffer

Si Si+1

buffer

buffer

buffer
buffer

buffer

buffer
buffer

buffer

buffer
buffer

buffer

executing

idle



Problem Formulation

Determine the number of consecutive executions for 
each pipeline stage, so that the energy savings will be 
maximized

keep the average throughput of the application constant
take into account the energy penalty caused by the 

increase in the number of buffers



Type-1 Processes

If for process v of stage Gs the idle time l(Gs)-l(v) is not 
enough to put v in sleep mode, then v is a type-1 process
For type-1 processes the energy savings are an increasing 
function of the number of consecutive executions (x) of the 
stage Gs
An upper bound for the energy savings in L cycles using this 
technique is derived

3 L
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Gs executing

l(v)

3L-3 l(Gs)

3L - ( 2l(Gs)+l(v) )

l(Gs) - l(v)



Type-2 Processes

If for process v of stage Gs the idle time l(Gs)-l(v) is enough to 
put v in sleep mode, then v is a type-2 process
For type-2 processes the energy savings in L cycles are 
independent of the number of consecutive executions of Gs

3 L

3 l(Gs)
 v active

Gs and v idle

Gs executing

l(v)

3L-3 l(Gs)

3L - ( 2l(Gs)+l(v) )l(Gs)-l(v)l(Gs)-l(v)

3L - 3l(v)



Energy Penalty on Channels

The energy penalty of an edge is an increasing, non-
linear function of the number of buffers

Number of buffers is increasing with respect to
the x value of the tail and head node (case 1)
the lcm of the x values of tail and head node (case 2 –

unirate case)
the lcm of the x and q values of the tail and head node 

(case 3 – multirate case)
Table that returns the energy penalty based on the x 

values of the tail and head node of the channel is input 
to the algorithm



Bound on x – quality metric

Given a quality metric p as input to the algorithm, a 
bound xmax can be derived for the x values from the 
parameters of the graph (case 1 and case 2)

In solution space [1, xmax]|S| there is at least one 
solution for which Esav > (1-p) Emax

For example if input p=0.02, there will be solution 
with Esav > 0.98 Emax in the solution space

The bound xmax is derived from the effect of an 
increase in x can have on the energy savings of type-1 
processes 



Bound on x – energy penalty

Bound will be determined by energy penalty on 
channels between pipeline stages

Theoretical limit on savings for type-1 processes
Bound is derived when the penalty on a single edge 

exceeds all savings
Bound is applicable to all three cases (increasing 

function, unirate graph, multirate graph)



Dynamic Programming Algorithm -
Intuition

Even after determining xmax, the solution space is 
still large (xmax|S|)

For the x value of pipeline stage Si, only the x values 
of stages Si-1 and Si+1 need to be taken into account

Algorithm finds best solution for each stage, for any x
values of the neighbor stages

Then the algorithm combines the best solutions to 
solve the problem for each subchain, for any x values 
of the neighbor stages

The solution returned by the algorithm maximizes the 
energy savings for the whole chain-structured graph 
under the restriction that for all stages x belongs to [1, 
xmax]



Dynamic Programming Algorithm
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Experimental Results
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Experimental Results

Application Input Rate Alg. Exec. Time (sec) xmax Increase in En. Savings
CD-to-DAT (multirate -3 stages) 50% 2.97 71 15.17%

25% 2.97 71 5.25%
12.50% 2.98 71 2.27%

K-means clustering (unirate - 10 stages) 11.10% 144.39 169 N/A
8.33% 29.26 100 107.31%
6.67% 3.37 49 6.71%

K-means clustering (unirate - 3 stages) 33.33% 5.79 100 900.38%
25.00% 0.7 49 24.25%
12.50% 0.06 16 0.00%

Application 10-stage K-means 3-stage K-means
p 0.9 0.95 0.9 0.95

Input Rate 6.67% 6.67% 25.00% 25.00%
Alg. Exec. Time(sec) 3.37 351 0.7 44.2

xmax 49 225 49 196
Increase in En. Savings 6.71% 6.71% 24.25% 24.25%



Conclusions

Presented an algorithm to increase energy 
savings of pipelined streaming applications

Algorithm increases energy savings obtained 
from power gating by finding the number of 
consecutive executions of each pipeline stage

Energy savings are larger when the slack is 
not enough for all hardware units to be put into 
sleep mode



Thank you!
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