
A Dynamic-Programming Algorithm for
Reducing the Energy Consumption of
Pipelined System-Level Streaming
Applications

N. Liveris, H. Zhou, P. Banerjee*
Northwestern University, Evanston IL, USA

*HP Labs, Palo Alto Ca, USA

ASP-DAC 2008, Seoul, Korea
January 22, 2007

Outline

Motivation
Technique
Theoretical Exploration
Dynamic Programming Solution
Experimental Results
Conclusions

Motivation

Leakage power consumption is expected to
become dominant for future technologies
Techniques for reducing power consumption
are needed that

are adaptive to environment changes
do not require resynthesis of IP cores

Power Gating

Sleep transistor creates
“virtual Vdd” when logic
block is idle (sleep = 1)
Stand-by energy
consumption is decreasing

E = T IL(Vdd) Vdd

Logic Block

sleep

Power Gating

With power gating a module is shut down
when it is idle
Energy penalty mainly for switching from
sleep to active – loading of the nodes back to
normal Vdd levels
In this work we try to increase the energy
savings by reducing the number of switches

Synchronous Dataflow Graphs

Each node represents
computation process

constant production and
consumption rate

executed a specific number
of times during each
complete cycle

Edge represents a channel
between two actors

FIFO protocol for tokens
initial number of tokens on

edge (delays)

qB= 2

A CB
4 6

1 1

3 2

1

4
qA= 3 qC= 3

p(e) c(e)w(e)

If for all edges p(e)=c(e)=1,
the graph is called unirate.

Chain-Structured Synchronous Data Flow
Graphs

First level of hierarchy, chain-structured Synchronous
Data Flow Graph
Each node Si reads data produced by Si-1 and produces
data for Si+1

Each node represents a pipeline stage and can be
executed in parallel with other nodes
Model commonly used for pipelined streaming
applications

S0 S1 Si-1 Si Si+1 S|S| S|S|+1......

System Description

Second level: Each stage is a graph
Nodes of the graph represent hardware units (processes) that can
be independently power gated
The edges of the graph represent data flow

S0 S1 Si-1 Si Si+1 S|S| S|S|+1

x

+
x

x

x

+

+

R

R

R

R

R

R

R

buffer

buffer

buffer

buffer

1st level

2nd level
Si Si+1

Si-1

Stage Execution

The interval L-l(Si) is the slack time for the stage Si

If for a process v of stage Si power can be saved,
the process is put to sleep mode while being idle
The number of consecutive executions of each
stage is 1 (x=1)

Si-1

buffer

buffer

Si

buffer

buffer
Si+1

l(Si)

L

executing

idle

Changing the Stage Execution

The interval 3L-3l(Si) is the slack time for the stage Si
More processes of stage Si can be put in sleep mode due to
the increased idle time
For some processes the penalty of switching mode is paid
only once in 3L
The number of consecutive executions of stage Si is 3 (x=3)

3l(Si)

3L

Si-1

buffer

Si Si+1

buffer

buffer

buffer
buffer

buffer

buffer
buffer

buffer

buffer
buffer

buffer

executing

idle

Problem Formulation

Determine the number of consecutive executions for
each pipeline stage, so that the energy savings will be
maximized

keep the average throughput of the application constant
take into account the energy penalty caused by the

increase in the number of buffers

Type-1 Processes

If for process v of stage Gs the idle time l(Gs)-l(v) is not
enough to put v in sleep mode, then v is a type-1 process
For type-1 processes the energy savings are an increasing
function of the number of consecutive executions (x) of the
stage Gs
An upper bound for the energy savings in L cycles using this
technique is derived

3 L

3 l(Gs)
 v active

Gs and v idle

Gs executing

l(v)

3L-3 l(Gs)

3L - (2l(Gs)+l(v))

l(Gs) - l(v)

Type-2 Processes

If for process v of stage Gs the idle time l(Gs)-l(v) is enough to
put v in sleep mode, then v is a type-2 process
For type-2 processes the energy savings in L cycles are
independent of the number of consecutive executions of Gs

3 L

3 l(Gs)
 v active

Gs and v idle

Gs executing

l(v)

3L-3 l(Gs)

3L - (2l(Gs)+l(v))l(Gs)-l(v)l(Gs)-l(v)

3L - 3l(v)

Energy Penalty on Channels

The energy penalty of an edge is an increasing, non-
linear function of the number of buffers

Number of buffers is increasing with respect to
the x value of the tail and head node (case 1)
the lcm of the x values of tail and head node (case 2 –

unirate case)
the lcm of the x and q values of the tail and head node

(case 3 – multirate case)
Table that returns the energy penalty based on the x

values of the tail and head node of the channel is input
to the algorithm

Bound on x – quality metric

Given a quality metric p as input to the algorithm, a
bound xmax can be derived for the x values from the
parameters of the graph (case 1 and case 2)

In solution space [1, xmax]|S| there is at least one
solution for which Esav > (1-p) Emax

For example if input p=0.02, there will be solution
with Esav > 0.98 Emax in the solution space

The bound xmax is derived from the effect of an
increase in x can have on the energy savings of type-1
processes

Bound on x – energy penalty

Bound will be determined by energy penalty on
channels between pipeline stages

Theoretical limit on savings for type-1 processes
Bound is derived when the penalty on a single edge

exceeds all savings
Bound is applicable to all three cases (increasing

function, unirate graph, multirate graph)

Dynamic Programming Algorithm -
Intuition

Even after determining xmax, the solution space is
still large (xmax|S|)

For the x value of pipeline stage Si, only the x values
of stages Si-1 and Si+1 need to be taken into account

Algorithm finds best solution for each stage, for any x
values of the neighbor stages

Then the algorithm combines the best solutions to
solve the problem for each subchain, for any x values
of the neighbor stages

The solution returned by the algorithm maximizes the
energy savings for the whole chain-structured graph
under the restriction that for all stages x belongs to [1,
xmax]

Dynamic Programming Algorithm

Final

(i,j)

j

i

1 |S|
1

|S|

i j |S|1 i+1i-1 j+1...

xi-1

xj+1

1
1

xmax

xmax

Experimental Results

0

50

100

150

200

250

300

350

CD-to-DAT
(50%)

CD-to-DAT
(25%)

CD-to-DAT
(12.5%)

En
er

gy
/c

yc
le

 (n
or

m
al

iz
ed

)

Power Gating Algorithm

0

100

200

300

400

500

600

700

800

K-means
clustering
(11.1%)

K-means
clustering
(8.33%)

K-means
clustering
(6.67%)

En
er

gy
/c

yc
le

 (N
or

m
al

iz
ed

)

Power Gating Algorithm

0

200

400

600

800

1000

1200

1400

1600

1800

K-means
clustering
(33.3%)

K-means
clustering

(25%)

K-means
clustering
(12.5%)

En
er

gy
/c

yc
le

 (N
or

m
al

iz
ed

)

Power Gating Algorithm

Experimental Results

Application Input Rate Alg. Exec. Time (sec) xmax Increase in En. Savings
CD-to-DAT (multirate -3 stages) 50% 2.97 71 15.17%

25% 2.97 71 5.25%
12.50% 2.98 71 2.27%

K-means clustering (unirate - 10 stages) 11.10% 144.39 169 N/A
8.33% 29.26 100 107.31%
6.67% 3.37 49 6.71%

K-means clustering (unirate - 3 stages) 33.33% 5.79 100 900.38%
25.00% 0.7 49 24.25%
12.50% 0.06 16 0.00%

Application 10-stage K-means 3-stage K-means
p 0.9 0.95 0.9 0.95

Input Rate 6.67% 6.67% 25.00% 25.00%
Alg. Exec. Time(sec) 3.37 351 0.7 44.2

xmax 49 225 49 196
Increase in En. Savings 6.71% 6.71% 24.25% 24.25%

Conclusions

Presented an algorithm to increase energy
savings of pipelined streaming applications

Algorithm increases energy savings obtained
from power gating by finding the number of
consecutive executions of each pipeline stage

Energy savings are larger when the slack is
not enough for all hardware units to be put into
sleep mode

Thank you!

	A Dynamic-Programming Algorithm for Reducing the Energy Consumption of Pipelined System-Level Streaming Applications
	Outline
	Motivation
	Power Gating
	Power Gating
	Synchronous Dataflow Graphs
	Chain-Structured Synchronous Data Flow Graphs
	System Description
	Stage Execution
	Changing the Stage Execution
	Problem Formulation
	Type-1 Processes
	Type-2 Processes
	Energy Penalty on Channels
	Bound on x – quality metric
	Bound on x – energy penalty
	Dynamic Programming Algorithm - Intuition
	Dynamic Programming Algorithm
	Experimental Results
	Experimental Results
	Conclusions
	Thank you!

