Statistical Power Profile Correlation for Realistic Thermal Estimation

Love Singhal^{*}, Sejong Oh[#], and Eli Bozorgzadeh^{*}

* Center for Embedded Computer Systems,

University of California, Irvine, US

#Korea Advanced Institute of Science and Technology,

Daejeon, Republic of Korea

Thermal Estimation at Microarchitectural Level

- Avoids overheating of the chip
- Identification of temperature hotspots
- Design and placement of DTM techniques
- Thermal aware Floorplanning

Thermal Estimation

A THE PARTY OF A DESCRIPTION	Here Bo - Lewer	IMMager_	MANAD INC.	IMM#Spp_initreg	C20) agrin Like ngint	RIM_right_L2_right
	PPMul			IntExec		417.73
		100	1.000.000			
	TPReg .					
	EPAdd					406.02
			ITB			
			19.9.0			
	apred		DIB			394.31
	Inacha		Deache			
	Rupped Pa					
						382.60
						270.80
						370.05
RDA_latt_L2						RIM_right_L2
						359.19
						347.48
						339.67
						005.01
		na Pro	ocess	or Floor	olan	
Temperature Es	timation					

Average and Peak Power Profile

Average Power Profile

- Underestimates temperature
- Misses hotspots
- Peak power Profile
 - Overestimates temperature
 - Detects false Hotspots

Uncorrelated power profiles can add errors

Tffact of Council at a

Blocks

Power Profile Pruning

Clustering Power Profiles

Compute Distance of each pair of power profile

Clustering algorithm to form clusters of close power profiles

Clustering of Power Profiles Statistical *Correlation* is used for computing closeness.
X = {P₁, P₂, P₃,..., P_m} where m is the number of blocks
Correlation:

 ρ_{XY} = E ((X-μ_X) (Y-μ_Y)) / σ_Xσ_Y

Distance:
 d_{XY} = 1 - correlation ρ_{XY}.

Given number of clusters *K*, form clusters with minimum intra-cluster distance

- Objectives:
 - Make K = 2 Clusters
 - Minimize δ
- Current Number of Clusters,
 - C = 4
 - Current maximum intracluster Distance,
 - δ = 0

- Objectives:
 - Make K = 2 Clusters
 - Minimize δ
- Current Number of Clusters,

- Current maximum intracluster Distance,
 - δ = 0.1

- **Objectives:**
 - Make K = 2 Clusters
 - Minimize δ
- **Current Number of** Clusters,

- Current maximum intracluster Distance,
 - $\delta = 0.1$

Objectives:

- Make K = 2 Clusters
- Minimize δ
- Current Number of Clusters,

• C = 2

Current maximum intracluster Distance,

• δ = 0.3

Algorithm stops when C = K

Leader Power Profile

Thermal Aware Floorplanner

- Simulated Annealing based Floorplanner
- Temperature in the cost function along with area, wire delay and wire length
- Modified version of HotFloorplan¹
 - Temperature estimation using multiple leader power profiles
 - Leakage Power
 - Estimated using temperature feedback loop

¹ K. Sankarnarayanan et al. in Journal of ILP 2006

Experiments

- Alpha 21264 Microprocessor
- SimpleScalar and Wattch Power Simulator
- SPEC CPU 2000 Benchmarks
- HotLeakage for Leakage power

Results – Peak and Average								
Floorplan Type	Maxin Wire Delay		Peak Temperature					
Multiple Power Profiles	1.658	0.040	363.5 Inaccurate estimation can lead					
Peak Power	2.276	0.048	3 to undetectable Hotspots					
Average Power	2.130	0.045	366					

L

Results - Clustering

Number of Clusters	Maximun wire Delay	Result decrease with fewe	quality s slightly r clusters	Peak Temper ure	a-	Speed up
15	1.656	.038	3 3	861.7		1.61
6	1.761	0.046	6 3	363.9		2.28
3	1.83	0.038	Floorplan	ner		2.9
2	1.804	0.043	increases fewer clus	with 8		2.9

Related Work

Temperature Estimation in Floorplanning K. Skadron et al. in ISCA, Jun 2003. K. Sankarnayanan et al. in Journal for ILP, 2006. Single Power Profile: Average or Peak **Application Dependent Floorplanning** C.-T. Chu et al. in IEEE ICCAD, Nov 2007 Single Power Profile: Average + Standard deviation

Conclusions

- In temperature estimation at microarchitecture level, average or peak power may give errors in estimation
- All uncorrelated power profiles should be considered during temperature estimation

Thank You

Multiple Applications in Temperature Estimation

- Temperature of a block depends on the power of neighboring blocks as well.
- Correlation of the power density of blocks is important
 - Application Specific
- Consider all applications to estimate peak temperatures
- Removes inaccuracy in temperature estimation
- Using all applications will slow the temperature estimation in floorplanning tool

Blocks

Thermal Aware Floorplanner

Create new Floorplan Using random move

Estimate Temperature of all the leaders of clusters. Estimate area and wirelength.

Calculate cost of the floorplan

If cost improvement or high temperature move, accept the floorplan

Max steps?

- Simulated Annealing based Floorplanner (HotFloorplan)
- Leakage Power is computed using temperature feedback
 loop and used for temperature estimation