A 1.2GHz Delayed Clock Generator for High-speed Microprocessor

*Inhwa Jung, Moo-Young Kim, Chulwoo Kim

Advanced Integrated Systems Lab. Korea University, Seoul, Korea

Outline

- Overall Concept
- Building Blocks
 - Multiphase Clock Generator
 - 1 to 0 Transition Detector
 - Phase Interpolator
 - Select Signal Generator
- Simulation Results
- Measurement Results
- Conclusions

Motivation

• 1.2 GHz RISC processor

- has a main clock generator using PLL
- Also needs multiphase local delayed clock generator to reduce system-level power consumption
- A local clock generator requires
 - single-cycle lock time for clock-on-demand
 - small area to be used in 14 places
 - low power consumption
- Conventional PLL/DLL and digital clock generators cannot meet all the requirements

Overall Block Diagram

1 to 0 Transition Detector

- Consists of quantizer and idetifier.

- Finds a position where data changes from 1 to 0.

Fundamental Idea of Select Signal

- If 1 to 0 transition detector finds a position of π phase, a position of $\pi/2$ phase can be easily determined.

- Half the number of delay cells in π phase points the position of $\pi/2$ phase.

- If the number of delay cells within a π phase is odd, interpolated phase is needed.

Phase Interpolator

- By proper sizing of inverters, interpolated phase can be achieved.

Shift of Select Signal

- Need to shift select signal to compensate the delay of phase interpolator and mux stages

Die Photo and Layouts of Tile1

Die photo of Tile1 108.5μm x 36.67μm

Layout of 1.2GHz RISC processor Fourteen $\pi/2$ and $3\pi/2$ tiles are used

Measurement Results of Tile2

One cycle lock time measurement

Jitter measurement Peak to peak jitter : 7.60ps @ 500MHz

Measurement Results of Tile1

- Measured by EMI scope
 - Peaks indicate rising edges of the clock signal
- Measurement results at 1GHz

Shmoo Plot of Tile2

 Operating frequency at 1.8V supply voltage is from 200MHz to 600MHz

Comparisons

* open loop, † closed loop

Company	Speed (GHz)	Process (um)	Area (mm²)	Power (mW)	Supply (V)	Jitter (ps)	Phase error
NEC [2]	1.5 ~ 2.8	0.13	0.009	30	1.5	21* 46.8†	±5°
Intel [3]	2.1 ~ 3.5	0.15	0.136	32* 70†	1.6		< 4%* < 8%†
NEC [4]	~ 1.2	0.25	0.140	15@ 2.5V	0.9-2.5	400 <i>@</i> 311MHz	0.29ns
Tile 1	0.625 ~ 1.2	0.13	0.004	3	1.2		< 2%
Tile 2	0.2 ~ 0.6	0.18	0.010	7.48	1.8	7.6@ 500MHz	< 2%
	0.05 ~ 0.15	0.18	0.010	0.518	0.9	30.8@ 150MHz	<2%

Note: [2] and [4] are clock and data recovery applications, and [3] and tiles are for microprocessor applications.

Conclusions

- Non-PLL/DLL Q-phase clock generator
 - Clock on demand (Fast lock time: 1 cycle)
 - Smaller area
 - Lower power consumption
 - No jitter accumulation (Open loop)
- All digital gates
 - Low voltage operation
 - (achieved via few logic depth)
 - Portable IP
 - Good for time-to-market
 - Fewer masks needed