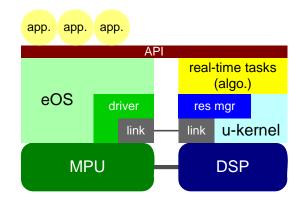
Multithreaded Coprocessor Interface for Multi-Core Multimedia SoC

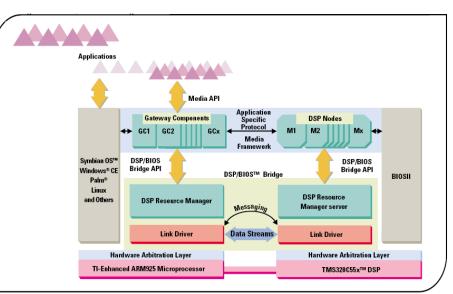
Shih-Hao Ou

Department of Electronics Engineering

National Chiao Tung University, Taiwan

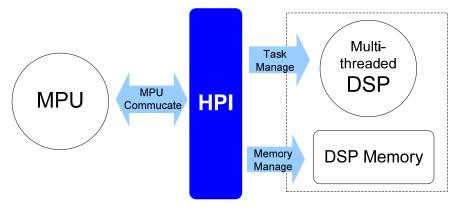
Outline

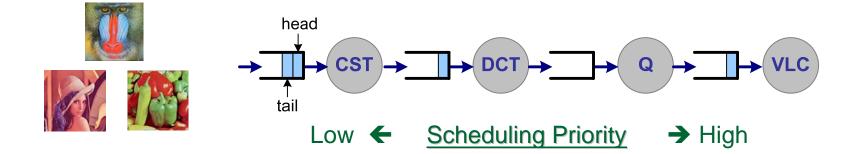

- Introduction
- Proposed Multithreaded Coprocessor Interface
- Performance Evaluation
- Conclusion


Introduction

- Dual-core & multi-core platform (with MPU & DSPs) are popular in multimedia and communication applications
 - MPU for control-oriented tasks, such as user interface, system coordination
 - DSP for computation-intensive tasks
- As the application complexity grows rapidly,
 - Multiple tasks tend to use DSP concurrently
 - Modern DSP explore parallelism among tasks to make the architecture more efficient
 - Thus, DSP task management is required

Dual-Core Software Architecture

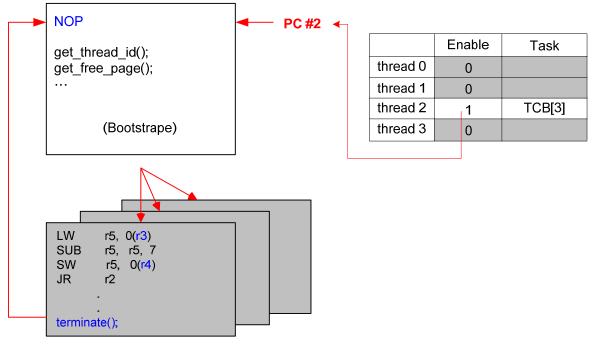

- Task management can be done on
 - DSP itself (with an OS or a kernel)
 - Not feasible for the intensive program flows & interrupt handling
 - Significant context switch overheads
 - Idle DSP-specific functional units
 - MPU (as a device driver)
 - MPU response time significantly affects the DSP utilization
- Example: TI OMAP
 - DSP/BIOS (kernel) & DSP/BIOS Link (or Linux DSP Gateway)
 - Problems
 - Inefficient mailbox-based & interruptdriven IPC
 - Thick software layer with high context switch overhead



Proposed Multithreaded Coprocessor Interface

- Intelligent host processor interface (HPI) with task management capability
 - Dedicated controller for task management offloaded either
 - From DSP (i.e. more hardware efficient)
 - From MPU (i.e. with quick response time)
 - Specific task loading mechanism
 - Instant task initialization
 - Reduce controller complexity

Task Scheduling


Priority queue

Task	Program address	Destination	Queue Pointer	
			Head	Tail
VLC	&VLC	-	1	0
Q	&Q	VLC	1	1
DCT	&DCT	Q	2	1
CST	&CST	DCT	4	2

Dispatch table

Enable	Task		
1	VLC		
0	-		
0	-		
0	-		

Task Loading

Computing Kernels

Performance Evaluation

Experimental setup

- CoWare ESL platform
 - ARM926(@297MHz) + TI C'64(@594MHz)
- Applications
 - 256x256 JPEG encoding
- Experimental results (total execution time)
 - MPU(uC-Linux): 47.409 ms
 - DSP(uC-OS-II): 17.844 ms
 - HPI: 15.315 ms
- Implementation
 - The area overhead of the proposed HPI is only 0.65% of the DSP core

Conclusion

- A multithreaded coprocessor interface with dynamical task management capability
 - Dedicated controller for task management
 - Specific task loading mechanism
- Our approach can improve the overall performance of a dual-core platform by 67% and the hardware overhead is only 0.65% of the DSP core