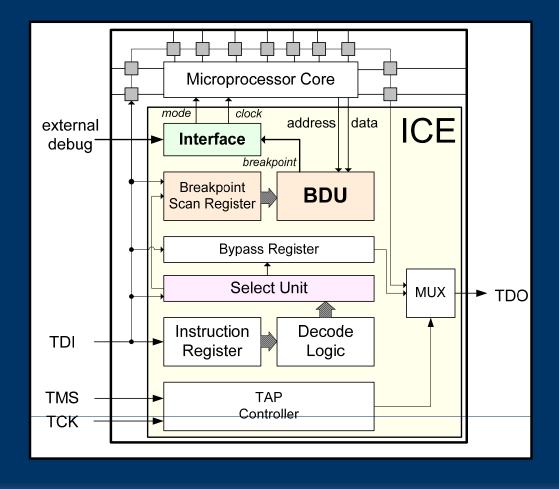

Parameterized Embedded In-Circuit Emulator and Its Retargetable Debugging Software for Microprocessor/Microcontroller/ DSP Processor

Presenter: Liang-Bi Chen

imbedded Systems Laboratory National Sun Yat-Sen University Authors: Liang-Bi Chen, Yung-Chih Liu, Chien Hung Chen Chung-Fu Kao, and Ing-Jer Huang
Embedded Systems Laboratory
Dept. of Computer Science and Engineering
National Sun Yat-Sen University, Taiwan, R.O.C.

Introduction to Embedded ICE

- Preserve the original behavior of a microprocessor
- Embedded ICE contains hardware breakpoint
- Allows instruction breakpoints and data watchpoints to be set
- Programmable through JTAG
- Comparators monitor:
 - Address bus
 - Data bus
 - Control signals
- When there is a match:
 - the processor halts execution
 - the debugger allows the user to view the state of the registers and memory through the JTAG port


Control

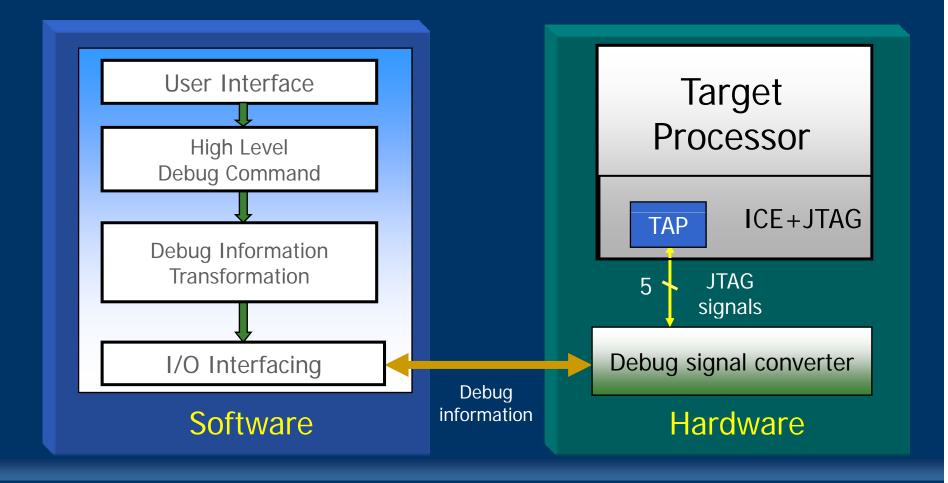
μP

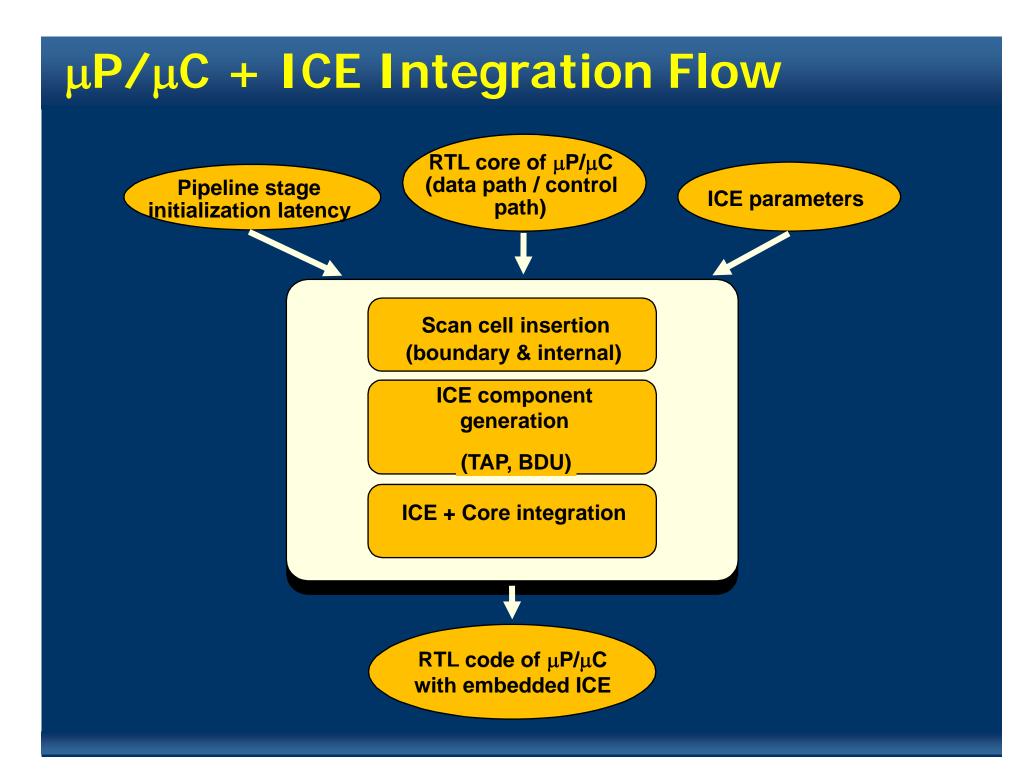
or

Block Diagram for the Embedded ICE

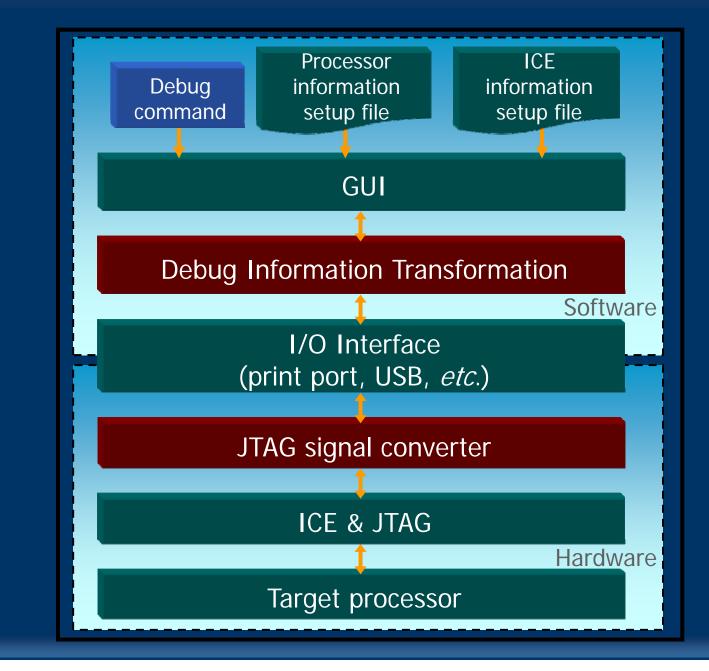
Our EICE is based on IEEE 1149.1 with some extensions

JTAG Extensions to Support the EICE Functionality Component Modification


Classification Components TAP controller, Boundary Scan Registers, Bypass Original 1149.1 Register JTAG components Instruction Register, Instruction Decode Logic, Data Modified 1149.1 **Register Selector** JTAG components Core Data Register, Breakpoint Scan Register, Scan-Chain Select Register, Breakpoint Detection Unit New Components


Feature

- Reusable ability to Reduce HW/SW Development Cost
 - In general, EICEs are designed for specific targets.
 - Our design can be applied different processors
- Easy to Integrate Embedded ICE IP into Processor

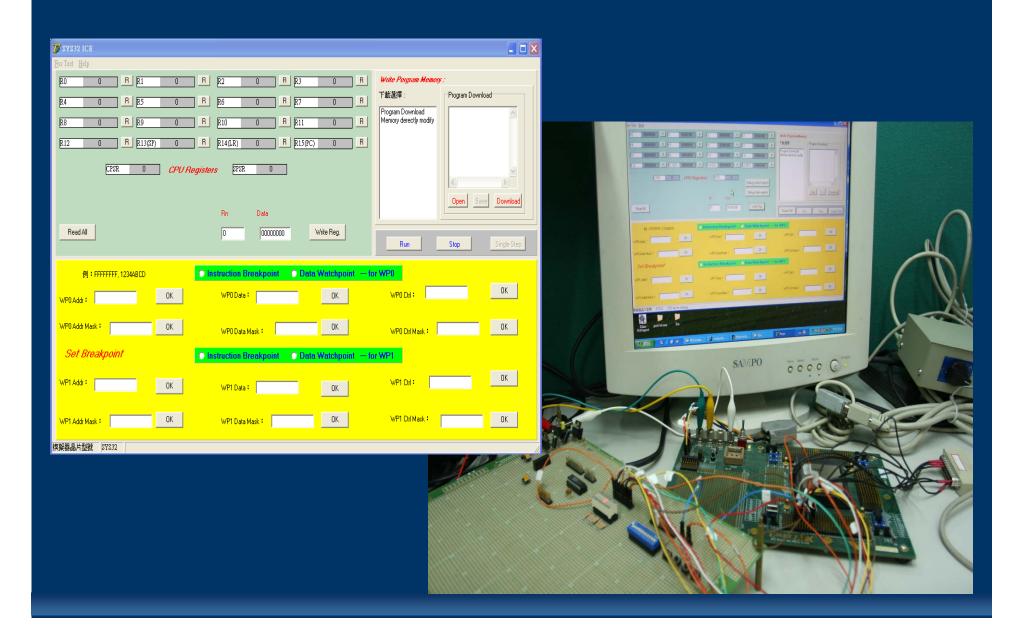

Proposed approach

HW/SW co-generate the debugging information

Retargetable EICE debugging software

Integration Consideration

- Interface between microprocessor and ICE
- Insertion of internal scan cells
- Define test data registers
- Breakpoint scan register
- Breakpoint detection unit
- Test data register selection method
- JTAG instructions extension
- Instruction decoder modification


Applications of the Retargetable ICE

- with 8-bit μC:
 - HT48100 (FPGA, chip) ... Holtek
- with 32-bit μP:
 - Academic ARM7-like CPU core (SYS32TM Series) (FPGA, chip) ...NSYSU
 - SPARC-like core (RTL) ... ACard
 - K310 CPU (in progress) ... Himax

With DSPs:

- PAC DSP (FPGA, chip) ... ITRI-STC,
- "Q" DSP (in progress) ... Himax

Prototyping for Our Designed Environment

Prototyping for ARM Development Environment

	ExtROM	Prototyping FPGA
		Processor Core (SYS32TM)
	ExtRAM	Embedded ICE
File Edit Yiew Target Project Build Debug Tools Help		
🗅 😹 🖉 🗼 🛍 🛍 💷 🖉 የንምምምም 🕈 🕇 🖊 🎉	🗶 🗈 🕼 🕼 🕼 🚛 🗶 📉 🚺 Tube 🔫	AMBA AHB 🕴 🕴 💱
ile Dam Find Low Level Step Into		
0000042C E3A0B01B MOV rll,#0x1b		SMI Arbiter TIC Decoder
00000430 E3A0C01C MOV r12,#0x1c		
00000434 E3A0D01D MOV r13,#0x1d	R2 00000013 R3 00000014	
00000438 E1A00000 NOP	R4 0000015 R5 0000015	
0000043C E3A00011 MOV r0,#0x11		
00000440 E3A01012 MOV r1,#0x12 00000444 E3A02013 MOV r2,#0x13		
00000444 E3A02013 NOV r2,#0x13 00000448 E3A03014 NOV r3,#0x14		
00000440 E3A03014 H0V 13, F0X14 0000044C E3A04015 M0V r4, #0x15	R10 0000001A R11 0000001B R12 0000001C 3P 0000001D	
00000450 E3A05016 NOV r5,#0x16	LR 00000454 PC 00000444	
00000454 E3A06017 MOV r6,#0x17		
00000458 E3A07018 MOV r7,#0x18	CPSR 00000010 MZCV FTO TRO STATE MODE	
0000045C E3A08019 MOV r8,#0x19	Core / Debug /	
00000460 E3A0901A MOV r9,#0x1a		
00000464 E3A0A01B MOV r10,#0x1b		
00000468 E3A0B01C MOV r11,#0x1c		
0000046C E3A0C01D MOV r12,#0x1d	Type Value	
00000470 E3A0D01E NOV r13,#0x1e	ARN7TDHI r1 PC=0x0000044C	
22222 JE & BU 122222 BA	Image <none></none>	
00000474 E1A00000 NOP		
00000478 E3A00012 MOV r0,#0x12		
	ARM	Reduces and States and States

Conclusion

- We propose a parameterized embedded in-circuit emulator and its retargetable debugging software in order to reduce the debugging design procedure time for different target systems.
- The goal is to integrate the EICE component into the microcontroller/microprocessor/DSP processor, and to execute debugging functions via proposed retargetable GUI debugger tool.
- As a result of it, the duration of debugging procedure and time-to-market is reduced.