LVDS-type On-Chip Transmission Line Interconnect with Passive Equalizers in 90 nm CMOS Process

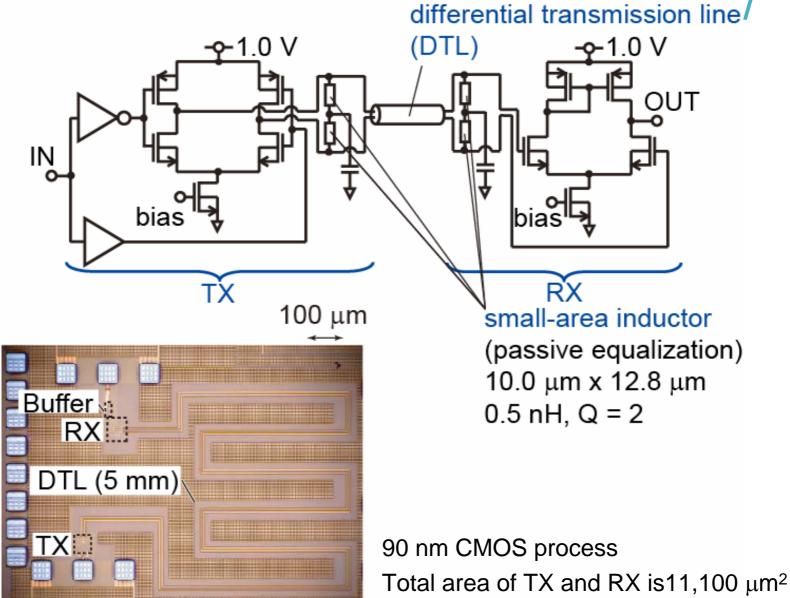
Akiko Mineyama¹, Hiroyuki Ito², Takahiro Ishii¹, Kenichi Okada¹, and Kazuya Masu¹

¹Integrated Research Institute, Tokyo Institute of Technology ²Precision and Intelligence Laboratory, Tokyo Institute of Technology

ASP-DAC 2008 LSI University Design Contest, Jan. 22, 2008, Seoul

Miniaturization of Si CMOS

- ■Increase in global interconnect delays
 - Complicates timing designs
 - Limits LSI performances
- Transmission line interconnects^[1]
 - □ Much smaller delay than conventional lines
 - □ High power-efficiencies at high-speed signaling


Purpose

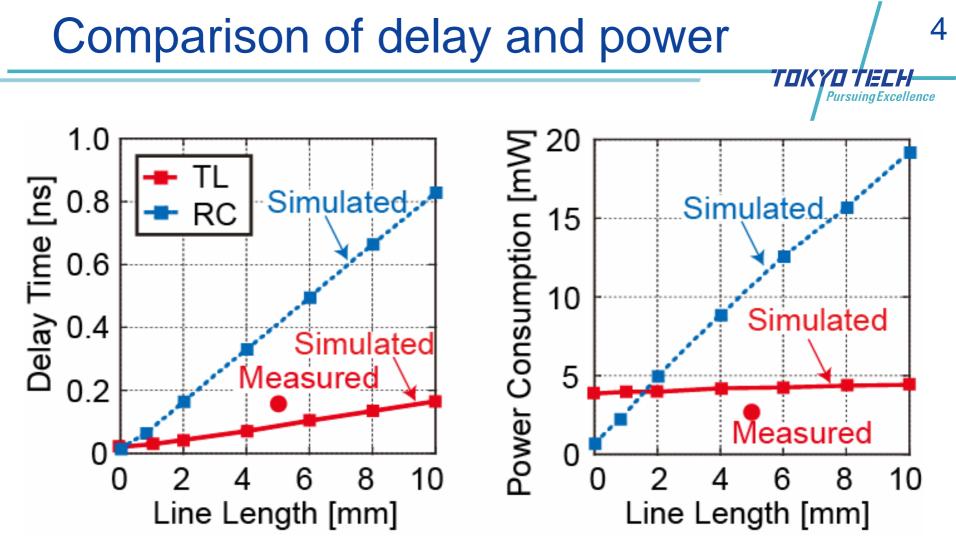
To propose a low-voltage-differential-signaling (LVDS) type transmission line interconnect for achieving higher speed and higher power-efficiency

[1]R. T. Chang, et al., IEEE JSSC, vol. 38, no. 5, pp. 834-838, May 2003.

The proposed DTL interconnect

TOKYO TIECH PursuingExcellence

Measurement results


1.0 iming margin 8.0 9.0 0.4 0.2 0.2 0.0 10.5 Gbps 15.9 mV / div 5 9 15.9 ps / div Frequency [Gbps] 90 nm standerd Si CMOS Process The maximum frequency 10.5 Gbps Average delay of 23 chips 173 ps / 5 mm TX : 1.9 mW, RX : 0.8 mW Power consumption (*V*DD=1V, 10Gbps) Total : 2.7 mW Energy per Bit 0.25 pJ / bit

* Eye-width margin is assumed to be over 20% of period at BER of 10⁻¹².

3

DTECH Pursuina Excellence

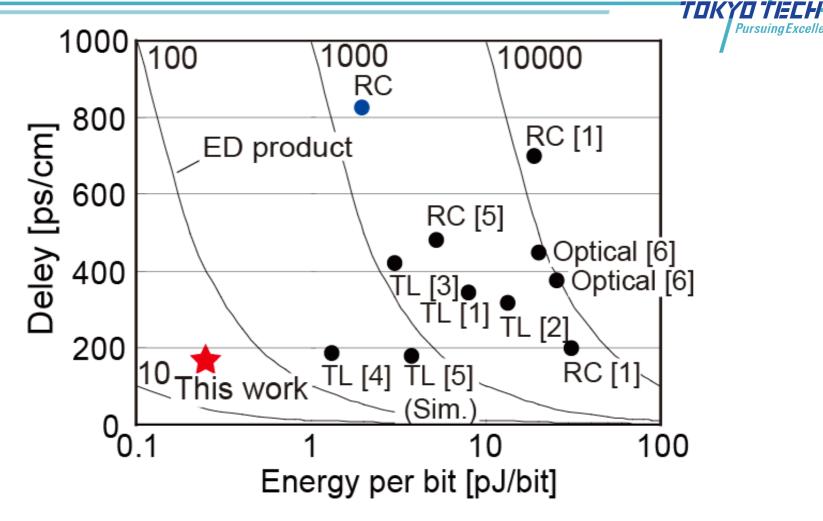
ΓΟΚΥ

•The transmission line interconnect

Shorter delay and smaller power consumption than the so-called RC line as the line length increases

RC line: Minimum line widths and optimal repeater spacing (0.4mm)

Delay variation


Number of interconnects RC ΤL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Delay of 5-mm-long line [ns]

	TL Interconnect	RC Line
Average delay (23 chip)	173ps	697ps
Delay variation (3σ)	55ps	310ps

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

Performance comparison

- [1] R. T. Chang, et al., IEEE JSSC, vol. 38, no. 5, pp. 834-838, May 2003.
- [2] H. Ito, et al., IEEE A-SSCC, pp. 417-420, 2005.
- [3] H. Ito, et al., Circuit Exhibition of ESSCIRC, Poster 26, 2005.
- [4] T. Ishii, et al., IEEE A-SSCC, pp. 131-134,. 2006.
- [5] S. Gomi, et al., IEEE CICC, pp. 325-328, 2004.
- [6] E. D. Kyriakis-Bitzaros, et al., JLT, vol. 19, no. 10, pp. 1532-1542, 2001.

Pursuing Excellence

• The LVDS-type on-chip transmission line (TL) interconnect was proposed.

ΓΠΚ

 Delay of the proposed TL interconnect is among the shortest, and energy per bit is the best in reported on-chip long interconnects.