A Low-leakage Current Power 180-nm CMOS SRAM

Tadayoshi Enomoto and Yuki Higuchi Chuo University Tokyo, Japan

January 22, 2008 ASP-DAC'2008, ID-5 COEX, Seoul, Korea

Presentation Outline

- 1. Low Leakage Current SRAMs
- 2. Problems of Deep Submicron Devices and Requirements for Leakage Current Reduction Circuits
- 3. Self-controllable-Voltage-Level (SVL) Circuit
- 4. Speed Performance & Dynamic Power
- 5. "Write Margin" Expansion by SVL Circuit
- 6. Summary

1-Kb, 180-nm CMOS SRAM with SVL Circuit

SVL: Self-controllable-Voltage-Level

Technology: 180-nm CMOS 5-layer Al Metal 1-layer Pory Si

Gate Lengths : $L_{\rm n} = L_{\rm p} = 0.2 \ \mu {\rm m}$

Threshold Voltage : $V_{\rm tn} = 0.435 \text{ V}$ $V_{\rm tp} = -0.415 \text{ V}$

Chip Size: 2.8 mm × 2.8 mm

Supply Voltage : 1.8 V

1-Kb, 180-nm CMOS SRAM (conventional)

1-Kb, 180-nm CMOS SRAM (with SVL Circuit)

Problems of Deep Submicron Devices

Supply Voltages mast be lowered, but Electric Fields have increased

Leakage Currents (Sub-threshold, GIDL and Tunneling) Increased

"Write" Margin of SRAM

Decreased

Leakage Current Reduction and "Write" Margin Expansion Circuits are Needed

Requirements for Leakage Current Reduction & "Write" Margin Expansion Circuits

Self-controllable Voltage Level (SVL) Circuit

Memory Cell Array in Stand-by Mode

Leakage Power (*P*_{ST}) of 1-Kb Memory Cell Array of 180-nm CMOS SRAM (SPICE)

Memory Cell Array in "Read" Mode

Measured Waveforms of 1-Kb, 180-nm CMOS SRAM with SVL Circuit

Write Data =1, 0, 1, 1, 1, 1, 0, 0 · · · · = Read Data

Vertical=2V/div., Horizontal=50.0 nsec/div. V_{DD} =1.8V, V_{SS} =0V, f_c =100 MHz

Waveforms of 1-Kb, 180-nm CMOS SRAM with SVL Circuit ("1" Read)

Memory Cell Array in "Write" Mode

Characteristics of 1Kb, 180-nm CMOS SRAM with SVL Circuit

		Conv.	<i>m</i> = 1	<i>m</i> = 2
"1" Read Access Time (t _a) [psec]		535.5	536.9	536.9
(SVL/Conv. [%])			(100.3%)	(100.3%)
Stand-by Power (Leakage Power) (P _{ST}) [nW]	Cell Array (SVL/Conv. [%])	69.1	8.3 (12.0%)	3.7 (5.4%)
	SRAM (SVL/Conv. [%])	105.5	44.7 (42.4%)	40.7 (38.6%)
Active Power (<i>P</i> _{AT}) [μW] @200MHz		3,296.0	3295.6	3295.6
(SVL/Conv. [%])			(99.9%)	(99.9%)
Active Area[mm ²]		0.0944	0.0959	0.0960
(SVL/Conv. [%])			(101.6%)	(101.7%)

 $V_{\rm DD} = 1.8 \text{ V}, V_{\rm SS} = 0 \text{ V}, f_{\rm c} = 200 \text{ MHz}, T = 25 \text{ }^{\circ}\text{C}$

End of the presentation...