A Low-leakage Current Power
180-nm CMOS SRAM

Tadayoshi Enomoto and Yuki Higuchi
Chuo University
Tokyo, Japan

January 22, 2008
ASP-DAC’2008, ID-5
COEX, Seoul, Korea
Presentation Outline

1. Low Leakage Current SRAMs
2. Problems of Deep Submicron Devices and Requirements for Leakage Current Reduction Circuits
3. Self-controllable-Voltage-Level (SVL) Circuit
4. Speed Performance & Dynamic Power
5. “Write Margin” Expansion by SVL Circuit
6. Summary
1-Kb, 180-nm CMOS SRAM with SVL Circuit

Technology:
- 180-nm CMOS
- 5-layer Al Metal
- 1-layer Pory Si

Gate Lengths:
- $L_n = L_p = 0.2 \, \mu m$

Threshold Voltage:
- $V_{tn} = 0.435 \, V$
- $V_{tp} = -0.415 \, V$

Chip Size:
- $2.8 \, mm \times 2.8 \, mm$

Supply Voltage: 1.8 V

SVL: Self-controllable-Voltage-Level
1-Kb, 180-nm CMOS SRAM
(conventional)

Word Structure:
8 bit \times (8 \times 16) \text{words}

Memory Cells:
\(W_p = 2.50 \, \mu\text{m} \)
\(W_n = 1.25 \, \mu\text{m} \)
1-Kb, 180-nm CMOS SRAM (with SVL Circuit)

Word Structure:
8 bit × (8 × 16) words

Memory Cells:
\[W_p = 2.50 \, \mu m \]
\[W_n = 1.25 \, \mu m \]

U-SVL Circuit:
\[W_p = 320.0 \, \mu m \]
\[W_n = 1.25 \, \mu m \]

L-SVL Circuit:
\[W_p = 1.25 \, \mu m \]
\[W_n = 320.0 \, \mu m \]
Problems of Deep Submicron Devices

Supply Voltages must be lowered, but Electric Fields have increased

↓

Leakage Currents
(Sub-threshold, GIDL and Tunneling)
Increased

“Write” Margin of SRAM
Decreased

↓

Leakage Current Reduction and “Write” Margin Expansion Circuits are Needed
Requirements for Leakage Current Reduction & “Write” Margin Expansion Circuits

“Read” Mode
High Supply Voltage (V_{DD}, V_{SS})
High-Speed Read Operation

“Write” Mode
Low Supply Voltage (V_D, V_S)
"Write" Margin Expansion

Stand-by Mode
High Threshold Voltages (V_{tS})
Low Electric Fields
Low Leakage Current
Data Retention

Memories and Flip-flops
Self-controllable Voltage Level (SVL) Circuit

Upper SVL Circuit
- p-MOSFET switch
- wide channel
- low threshold voltage

n-MOSFET switches
- narrow channel
- low threshold voltage

Lower SVL Circuit
- n-MOSFET switch
- wide channel
- low threshold voltage
- p-MOSFET switches
- narrow channel
- low threshold voltage
Memory Cell Array in Stand-by Mode

Upper SVL Circuit:
nMOS Switch is Turned on
\[V_D = V_{DD} - V_n (< V_{DD}) \]

Lower SVL Circuit:
pMOS Switch is Turned on
\[V_S = V_{SS} + V_p = V_p (> 0V) \]

Memory Cells:
Reduced Electric Field: \(V_{ds} < V_{DD} \)
Increased Backward Bias: \(-V_{sub} > 0\)

Leakage Currents; Reduced Memory Cell Data; Retained
Leakage Power (P_{ST}) of 1-Kb Memory Cell Array of 180-nm CMOS SRAM (SPICE)

- Conventional
 - $P_{ST}=69.1$ nW

- SVL Circuit with $m=1$
 - $P_{ST}=8.3$ nW at $V_{DD}=1.8V$
 - 12.0%

- SVL Circuit with $m=2$
 - $P_{ST}=3.7$ nW at $V_{DD}=1.8V$
 - 5.4%

$V_{SS}=0V$, $T=25$ °C
Memory Cell Array in “Read” Mode

- Upper SVL Circuit: pMOS Switch is Turned on, V_{DD} is Supplied
- Lower SVL Circuit: nMOS Switch is Turned on, V_{SS} is Supplied

Memory Cells:
- Max. Supply Voltage: $V_{ds} = V_{DD}$
- No backward Bias: $V_{bs} = 0$
- High-Speed “Read” Operation
Measured Waveforms of 1-Kb, 180-nm CMOS SRAM with SVL Circuit

Write Data =1, 0, 1, 1, 1, 1, 0, 0 · · · · = Read Data

Vertical=2V/div., Horizontal=50.0 nsec/div.
$V_{DD}=1.8\text{V}, V_{SS}=0\text{V}, f_c=100 \text{ MHz}$
Waveforms of 1-Kb, 180-nm CMOS SRAM with SVL Circuit ("1" Read)

\[
\begin{align*}
V_{DD} &= 1.8 \, \text{V}, \\
V_{SS} &= 0 \, \text{V} \\
V_D &= 1.026 \, \text{V}, \\
V_S &= 0.354 \, \text{V} \\
V_{DD} &= 1.8 \, \text{V}, \\
V_{SS} &= 0 \, \text{V}
\end{align*}
\]

Conventional
\[t_a = 535.5 \, \text{psec}\]

SVL Circuit with \(m=1, 2\)
\[t_a = 536.9 \, \text{psec}\]

at \(V_{DD}=1.8\,\text{V}\)
Memory Cell Array in “Write” Mode

Upper SVL Circuit:
- pMOS Switch is Turned on
- \(V_{DD} \) is Supplied

Lower SVL Circuit:
- nMOS Switch is Turned on
- \(V_S = V_{SS} + V_p (> V_{SS}) \) is Supplied

Memory Cells:
- Min. Supply Voltage: \(V_{ds} = V_{DD} - V_p \)
- Backward Bias: \(V_{bs} = -V_p \)

“Write” Margin Expansion
Characteristics of 1Kb, 180-nm CMOS SRAM with SVL Circuit

<table>
<thead>
<tr>
<th></th>
<th>Conv.</th>
<th>$m = 1$</th>
<th>$m = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“1” Read Access Time (t_a) [psec] (SVL/Conv. [%])</td>
<td>535.5</td>
<td>536.9 (100.3%)</td>
<td>536.9 (100.3%)</td>
</tr>
<tr>
<td>Stand-by Power (Leakage Power) (P_{ST}) [nW]</td>
<td>69.1</td>
<td>8.3 (12.0%)</td>
<td>3.7 (5.4%)</td>
</tr>
<tr>
<td>Cell Array (SVL/Conv. [%])</td>
<td>105.5</td>
<td>44.7 (42.4%)</td>
<td>40.7 (38.6%)</td>
</tr>
<tr>
<td>SRAM (SVL/Conv. [%])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power (P_{AT}) [µW] @200MHz (SVL/Conv. [%])</td>
<td>3,296.0</td>
<td>3295.6 (99.9%)</td>
<td>3295.6 (99.9%)</td>
</tr>
<tr>
<td>Active Area [mm2] (SVL/Conv. [%])</td>
<td>0.0944</td>
<td>0.0959 (101.6%)</td>
<td>0.0960 (101.7%)</td>
</tr>
</tbody>
</table>

$V_{DD} = 1.8$ V, $V_{SS} = 0$ V, $f_c = 200$ MHz, $T = 25$ °C
End of the presentation...