Dynamic Supply Noise Measurement Circuit Composed of Standard Cells Suitable for In-Site SoC Power Integrity Verification

Y. Ogasahara, M. Hashimoto, and T. Onoye
Osaka University, Japan
SoC Power Integrity Verification

- Measurement circuit suitable for embedding
 - Area
 - Layout/routing cost
 - Circuit design cost
 - Synchronization with clock for digital circuit

<table>
<thead>
<tr>
<th></th>
<th>sample & hold</th>
<th>Improved ring osci.[1]</th>
<th>Proposed circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/voltage resolution</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Circuit design cost</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Physical design cost</td>
<td>△</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>for embedding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>area</td>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>synchronization with clock</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Ordinary ring oscillator

V_{dd} fluctuation causes cycle time variation

Operating continuously

V_{dd} at specific timing cannot be observed.
(Average of V_{dd} is observed)
Proposed `gated oscillator`

- Transmission gates are inserted into ring oscillator.
- Holding oscillation state with transmission gates

![Diagram of a gated oscillator circuit]
Proposed "gated oscillator"

- Transmission gates are inserted into ring oscillator.
- Holding oscillation state with transmission gates
Proposed `gated oscillator`

- Transmission gates are inserted into ring oscillator.
- Holding oscillation state with transmission gates
Proposed ``gated oscillator"

- Transmission gates are inserted into ring oscillator.
- Holding oscillation state with transmission gates
Proposed `gated oscillator`"

- Transmission gates are inserted into ring oscillator.
- Holding oscillation state with transmission gates
Operation of gated oscillator

- Operating only while `enable`=1
 - Capturing V_{dd} at specified timing
- Accumulating cycle count by repetition

![Diagram](image)
Micrograph of test chip

Process: 90nm CMOS
Supply voltage: 1.0V
Area: 1.54 x 1.54mm
Num. of gates: 100k

Test structures including noise sources and gated oscillators are implemented.
Voltage resolution of ``gated oscillator''

- 10-20mV voltage resolution with 400ps `enable' signal width (= 2.5G sampling)
- Max. $\sigma = 0.98\%$ (1000 measurements)
 - Fine reproducibility

No voltage resolution (constant count)
enable=600ps
enable=200ps
enable=400ps

Monotonically increasing

The cycle count of gated oscillator is measured with stable supply voltage.

\[V_{dd} \]
\[\text{`enable' width} \]
\[= \text{time resolution} \]
Waveform observation

- 70mV difference of peak drop was observed.
- Dynamic noise waveform is observed with gated oscillator.
Features of proposed circuit

- Waveform sampling with digital circuit
 - Consisting of standard cells
 - Dedicated power and bias lines are not needed.
 - Circuit design is easy.
 - Physical design (place, route) cost is small.
 - Size and shape are flexible.

- Small area
 - 11.76\(\mu\)m X 15.12\(\mu\)m
 (A layout sample in 90nm process)

- Synchronization with any external clock
 - Application for SoC power integrity verification
Thank you