Duo-Binary Circular Turbo Decoder Based on Border Metric Encoding for WiMAX

Ji-Hoon Kim and In-Cheol Park

Division of Electrical Engineering KAIST

Introduction to Turbo Codes

Introduced in 1993

- Error Correcting Performance within 0.5dB of Shannon limit
- Widely Used in W-CDMA, CDMA2000, and WiMAX
- Non-Uniform Interleaver

Turbo Codes for WiMAX

- Double-Binary Turbo Codes
 - Better Convergence
 - Larger Minimum Distances
 - Reduced Latency

< CTC Encoder for WiMAX >

- Circular Coding
 - a.k.a Tail-Biting
 - No Tail Bits
 - Avoid Spectrum Waste

< 4-State Trellis for Circular Coding >

Max-log-MAP for Double-Binary

$$\begin{split} \tilde{\alpha}_{k}(s_{k}) &\cong \max_{s_{k+1} \in A} \left[\tilde{\alpha}_{k-1}(s_{k-1}) + \tilde{\gamma}_{k}(s_{k-1} \to s_{k}) \right] \\ \tilde{\beta}_{k}(s_{k}) &\cong \max_{s_{k+1} \in B} \left[\tilde{\beta}_{k+1}(s_{k+1}) + \tilde{\gamma}_{k+1}(s_{k} \to s_{k+1}) \right] \\ \tilde{\gamma}_{k}(s_{k} \to s_{k+1}) &= \ln \left[P(\mathbf{y}_{k} \mid \mathbf{x}_{k}) \cdot P(u_{k} = z) \right] \\ &= \frac{L_{c}}{2} (x_{k}^{s_{1}} y_{k}^{s_{1}} + x_{k}^{s_{2}} y_{k}^{s_{2}} + x_{k}^{p_{1}} y_{k}^{p_{1}} + x_{k}^{p_{2}} y_{k}^{p_{2}}) + L_{e,IN}^{(z)} \end{split}$$

$$\begin{split} \Lambda_{k}^{(z)} &\cong \max_{(s_{k} \to s_{k+1}, z)} \Big[\tilde{\alpha}_{k}(s_{k}) + \tilde{\gamma}_{k+1}(s_{k} \to s_{k+1}) + \tilde{\beta}_{k+1}(s_{k+1}) \Big] \\ &- \max_{(s_{k} \to s_{k+1}, 00)} \Big[\tilde{\alpha}_{k}(s_{k}) + \tilde{\gamma}_{k+1}(s_{k} \to s_{k+1}) + \tilde{\beta}_{k+1}(s_{k+1}) \Big] \end{split}$$

Avoid "Complex Metric Calculation" with Minimum Overhead

Proposed Border Metric Encoding

Allow only a few values for the Border Metric

BER Performance Comparison

Almost No Performance Degradation!

Proposed Dedicated Interleaver

Accumulator-Based Interleaver

- Small Area due to Simple Hardware

$$P(i) = (P_{\theta} \cdot i + Init)_{mod N}$$

= [(P_{\theta} \cdot i)_{mod N} + (Init)_{mod N}]_{mod N}

Key to Low-Power Consumption

- Small-Sized Border Memory
 - By Border Metric Encoding
- Infrequent Access to Border Memory
 - Only one load/store for processing one Window

0.13 µm 6-Metal CMOS Process

Implementation Results

• Time-Multiplex Architecture

Memory Size Comparison

• Single-Port SRAM Size

11

Energy Consumption Comparison

• For a SISO Decoder @ 1.2dB

Conclusion

Border Metric Encoding is Proposed

- Avoid Complex Dummy Calculation
- Effective for non-binary Turbo Codes

Dedicated Hardware Interleaver is Proposed

- Generate Interleaved Addresses on-the-fly

• CTC Decoder for WiMAX is Designed

- Based on ..
 - Border Metric Encoding
 - Dedicated Hardware Interleaver