Efficient Synthesis of Compressor Trees on FPGAs

Hadi Parandeh-Afshar^{1,2} Philip Brisk² Paolo lenne²

University of Tehran, ECE Department
EPFL, School of Computer and Communication Sciences

- State of the Art: FPGAs
- Motivation
- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

- State of the Art: FPGAs
- Motivation
- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

FPGA vs. ASIC

	ASIC	FPGA
Performance	\checkmark	
Area Utilization	\checkmark	
Power Consumption	\checkmark	
Flexibility		\checkmark
Time-to-Market		\checkmark

FPGA Arithmetic Features

- Poor Performance for Arithmetic Operations Compared to ASIC
- IP Cores
 - High Routing Costs
 - Limited Flexibility; 18-bit Adder/Multiplier
- Full Adder Implemented in CLB Structure
 - Fast Carry-Chain (Xilinx and Altera)
 - Reduces Routing Delay
 - Cannot Use Compressor Trees to Add k>2 Values
 - Wallace/Dadda/3-Greedy

• State of the Art: FPGAs

Motivation

- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

Motivation

- Arithmetic dominated circuits such as multimedia and signal processing
 - Multi-input ADD is inherently a frequent operation
 - ADD and MULT are dominant operations
 - Using [Verma-lenne] transformations to integrate disperse operations
 - Accelerating multi-input additions

- State of the Art: FPGAs
- Motivation
- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

Counters

Count #of Input Bits Set to 1 Output # as a Binary Value

Counters You Know

- 2:2 Half Adder
- 3:2 Full Adder (Carry-Save Adder)

The <u>correct</u> building block for computing sums of k>2 numbers

Better than LUTs!

Generalized Parallel Counters (GPCs)

- A counter that can sum bits having different ranks
- Representation:

 $(K_{N-2}, K_{N-1}, ..., K_0; S)$

• IO Constraints: M and N are input and output constraints $\sum_{i=1}^{N-2} K_i \leq M$

$$\sum_{i=0}^{N-2} K_i 2^i \le 2^N - 1$$

- Examples
 - (3, 3; 4) GPC
 - (5, 5; 4) GPC

January 22, 2008

GPC Implementation

- Using basic gates
- Using an *m:n* counter can implement a GPC by connecting all input bits of rank *i* to 2*i* inputs of the counter
- Using *k*-LUTs for a *k*-input GPCs
 - Current FPGAs have bigger LUTs
 - i.e. Three 6-LUTs are required for a M=6, N=3 GPC

- State of the Art: FPGAs
- Motivation
- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

Mapping Heuristic

- How to:
 - Specify GPC configurations
 - Connect GPCs
- Definitions
 - Primitive GPCs (i.e. (1, 3; 3), (2, 3; 3))
 - Covering GPCs (i.e. (2, 3; 3))
 - Compression ratio
 - Unreasonable GPCs (i.e. (1, 2; 3))

Mapping Heuritsic

- Algorithm Objective:
 - Reducing logic levels and GPCs
- Algorithm Inputs:
 - M, N: Input/Output constraints
 - K: Number of final adder rows
 - A set of bits to be summed
- Algorithm contains 7 steps

Mapping Heuritsic: Steps

- Steps 1, 2, 3 and 7 are executed once
- Steps 4-6 occur inside a loop that generates the compressor tree.
- Steps:
 - Step1: Extracting covering GPCs.
 - Step2: Extracting primitive GPCs.
 - Step3: Sorting GPC w.r.t. compression ratio
 - Step4: Covering columns using above GPCs
 - Step5: Connecting generated GPCs to previously generated GPCs
 - Step6: Generating output bits of generated GPCs
 - Step7: Final addition, if *number* remained rows is less than K.

Mapping Heuritsic: Step4

- Covers all of the columns of the current logic level of the compressor tree with GPCs
- Finding base column: The tallest column
- Forward search
- Backward search
- Example

- State of the Art: FPGAs
- Motivation
- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

Experimental Methodology

- Altera Stratix-II
 - 90nm CMOS Technology
- For Multi-Input Addition Ops
 - ADD Adder Tree
 - Ternary Adders in Stratix-II
 - 3GD Compressor Tree
 - 3 input LUTs
 - GPCs Compressor Tree, M=6 and N=3
 - 6 input LUTs, 2 in each ALM

Experimental results (Delay)

27% on average GPC is faster than ADD

Experimental results (Area)

5% increase in ALMs usage for GPC compared to ADD

Experimental results (DSPs)

- State of the Art: FPGAs
- Motivation
- Generalized Parallel Counters
- Mapping Heuristic
- Experimental Results
- Conclusion

Conclusion

- GPCs are flexible constructs for mapping compressor trees
- GPCs map to LUTs well
- Compressor trees built from GPCs do map onto FPGAs better than adder trees