Area Recovery under Depth Constraint by Cut Substitution for Technology Mapping for LUT-based FPGAs

January 22, 2008

Taiga Takata

Graduate School of Information Science and Electrical Engineering

Kyushu University

Yusuke Matsunaga

Faculty of Information Science and Electrical Engineering

Kyushu University

Technology mapping problem for LUT-based FPGAs to minimize area under depth minimum constraint

Technology mapping problem for LUT-based FPGAs

- Input : Subject graph
 - DAG (Directed Acyclic Graph)
 - Each node represents a Boolean function of up to k variables
 - k : the maximum number of inputs of an LUT (Lookup-table)
- Output : LUT network
 - DAG whose nodes represent LUTs
- Object Minimize the number of LUTs of LUT network
- Constraint Depth of LUT network

Difficult problem

Technology mapping based on K-feasible cut selection

 A K-feasible cut at a node t is a partitioning (X, X) of transitive fanin (TFI(t))

 $TFI(t) = fanin(t) \bigcup_{u \in fanin(t)} TFI(u)$

 $|cutset(X, \overline{X})| \leq k$

- cutset is border nodes in X
- A subgraph induced by X can be implemented in a k-input LUT
 - cutset(X, X) is inputs of LUT

Technology mapping based on K-feasible cut selection

 A K-feasible cut at a node t is a partitioning (X, X) of transitive fanin (TFI(t))

 $TFI(t) = fanin(t) \bigcup_{u \in fanin(t)} TFI(u)$

$$|cutset(X, \overline{X})| \le k$$

- cutset is border nodes in X
- A subgraph induced by X can be implemented in a k-input LUT
 - cutset(X, X) is inputs of LUT

Technology mapping based on K-feasible cut selection

 A K-feasible cut at a node t is a partitioning (X, X) of transitive fanin (TFI(t))

 $TFI(t) = fanin(t) \bigcup_{u \in fanin(t)} TFI(u)$

 $|cutset(X, \overline{X})| \leq k$

- cutset is border nodes in X
- A subgraph induced by X can be implemented in a k-input LUT
 - cutset(X, X) is inputs of LUT

Proposed technique : Cut Substitution

 Cut Substitution : a post-processing of technology mapping to generate a local optimum solution by eliminating excessive LUTs while the depth of network is maintained

3

ves

6

- Cut Substitution directly eliminates several excessive cuts from the set of cuts selected at technology mapping
- The processing of Cut Substitution is loop iteration

Phase 1 : Excessive cut enumeration

LUT network

Phase 1 : Excessive cut enumeration

Are there cut at \otimes and \otimes not to use \otimes as input ?

Are there cut at \otimes and \otimes not to use \otimes as input ?

Phase 2 : Choice of a best-cut

 $Gain(\overline{\bigcirc})$: the number of cuts those are not necessary

doesn't exist

if

Phase 3 : Cut elimination

Phase 3 : Cut elimination

LUT network

Phase 3 : Cut elimination

Phase 3 : Cut elimination

LUT network

Experiment

- Comparison of the number of LUTs of LUT networks
 - Cut Substitution --- our method
 - The initial selected cuts given to Cut Substitution are generated by Ddmap
 - (Ddmap : A simple technology mapping algorithm to generate depth minimum network)
 - DAOmap --- Deming Chen, Jason Cong, 2004 [4]
 - A heuristic algorithm to generate area minimum network under depth minimum constraint
- Benchmarks
 - MCNC benchmark set
 - ITC'99 benchmark set
- Computing machine
 - CPU : Intel Xeon 3.0 GHz
 - Memory: 15 GB

Experimental results

The number of LUTs of LUT networks

Conclusion

- We presented Cut Substitution, the post-processing for technology mapping for LUT-based FPGAs to minimize area under depth constraint
- Ddmap + Cut Substitution generated networks with 9% less LUTs than the networks generated by DAOmap on average
 - The run time of Ddmap + Cut Substitution is
 3% shorter than that of DAOmap
- Future work : examining the effect of Cut Substitution combined to other technology mapping algorithms

Thank you all for your attention

Proposed technique : Cut Substitution

- Cut Substitution : a post-processing of technology mapping to generate a local optimum solution by eliminating excessive LUTs while the depth of network is maintained
 - Cut Substitution directly eliminates several excessive cuts from the set of cuts selected at technology mapping
- The processing of Cut Substitution is loop iteration
 - Excessive cut enumeration Enumerate all the excessive cuts among the selected cuts
 - Choice of a best-cut Decide a best-cut among the excessive cuts with a heuristic metric
 - Cut elimination
 Eliminate the best-cut by substitution of some other cut(s)

