An optimal algorithm for sizing sequential circuits for industrial library based designs

Sanghamitra Roy, Charlie Chen, Yu Hen Hu Shih-Pin Hung, Tse-Yu Chiang, Jiuan-Guei Tseng UW-Madison VLSI EDA

Acknowledgements

We are grateful to
Intel
TSMC
UMC
Faraday
SpringSoft
NSF

Motivation for sequential sizing

Integrated circuit

- Combinational blocks between flip-flops
- Optimize delay
 - Size each combinational block separately
 - Arrive at suitable clock frequency for circuit
 - Globally size the entire circuit
 - Combine sizing with clock skew optimization
 - Additional degree of freedom

Related work

Previous work on sequential optimization

 Linear program [Chuang '95]
 Piecewise linear models: limited accuracy
 Nonlinear convex program [Sathyamurthy '98]
 Elmore model: inaccurate for modern designs
 Prohibitively large constraints for larger circuits
 Previous methods target acyclic pipelines

Need efficient algorithms for handling large integrated circuits

Our sequential sizing formulation

Variables dependent on circuit components
Linear constraints and variables
Can handle cyclic circuits
Based on Lagrangian relaxation
Uses posynomial models for delay
For industrial library based designs

Sequential circuit optimization

a_i: Arrival time of signal at output of gate i

- C: Clock period of the circuit
- Flip-flop clock-to-Q delay ignored in formulation
 Clock skew at flip-flop i is a_i

Constraints for combinational gates

 $a_{3}^{rise} + D_{32}^{rise} (s_{3}^{rise}, L_{2}, cap_{2}) \le a_{2}^{rise}$ $a_{4}^{fall} + D_{42}^{rise} (s_{4}^{fall}, L_{2}, cap_{2}) \le a_{2}^{rise}$

Setup time constraints

Snapshot of problem formulation

Solution by Lagrangian Relaxation

Solved using Lagrangian relaxation
 Troublesome constraints relaxed by incorporating into the objective function

$$\begin{array}{ll} \textit{minimize} & \alpha_1 C + \alpha_2 \sum_{j \in N} cap_j \\ \textit{s.t.} & a_3^{\textit{rise}} + D_{32}^{\textit{rise}} \leq a_2^{\textit{rise}} \\ & \textit{bound}_j^{\textit{lower}} \leq cap_j \leq \textit{bound}_j^{\textit{upper}} \end{array}$$

Solution by Lagrangian Relaxation

Solved using Lagrangian relaxation
 Troublesome constraints relaxed by incorporating into the objective function

$$\begin{split} L_{\lambda} &= \alpha_1 C + \alpha_2 \sum_{j \in N} cap_j \\ &+ \lambda_{32}^{rise} (a_3^{rise} + D_{32}^{rise} - a_2^{rise}) \end{split}$$

Solution by Lagrangian Relaxation

Solved using Lagrangian relaxation
 Troublesome constraints relaxed by incorporating into the objective function

 $\begin{array}{ll} \textit{minimize} & L_{\lambda} \\ \textit{s.t.} & \textit{bound}_{j}^{\textit{lower}} \leq \textit{cap}_{j} \leq \textit{bound}_{j}^{\textit{upper}} \end{array}$

Results: Optimized clock period

Circuit	Optimized clock period		Percent
	Sizing + skew (ns)	Sizing + skew Sizing only (ns) (ns)	improvement %
s27.v	0.341	0.426	19.95
s298.v	0.866	1.269	31.76
s386.v	0.902	0.968	6.82
s444.v	1.070	1.192	10.23
s820.v	1.693	1.818	6.88
s5378.v	1.990	2.129	6.53
s13207.v	2.718	3.129	13.14

12.6% improvement in optimal clock period

Results: Area of optimized netlist

Circuit	Commercial Synthesis Tool $(\mu m)^2$	Sizing + skew $(\mu m)^2$	Reduction %
s27.v	168	99	41.07
s298.v	694	653	5.91
s386.v	554	499	9.93
s444.v	923	836	9.43
s820.v	1183	1011	14.54
s5378.v	7773	7688	1.09
s13207.v	20730	20283	2.16

11.3% average improvement in area

Conclusion

- Optimal gate sizing and clock skew optimization algorithm
- Target synchronous sequential circuits
- First algorithm to handle cyclic sequential circuits
- Results for industrial libraries

Thank You!

Backup slides

Clock skew optimization

Intentional clock skews: better performance
 Minimum period 3 units: no skew
 With skew a₂ = +1 minimum period 2 units