Hierarchical Krylov Subspace Reduced Order Modeling of Large RLC Circuits

Duo Li and Sheldon X.-D. Tan

Department of Electrical Engineering University of California, Riverside, CA

Outline

- Introduction and Motivation
- Review of subspace projection based MOR
- Hierarchical projection MOR: hiePrimor
 - Partitioned MNA and reduction
 - Moment matching connection
 - Analysis of passivity preservation
 - Circuit partitioning
- Summary

Introduction and Motivation

- Massive circuits are reduced by approximate compact models before simulations.
- Explicit moment matching and Krylov subspace
- Hierarchical and parallel techniques
- Passivity preservation

Review of subspace projection based MOR

• Circuit formulation

$$C\dot{\mathbf{x}}_n = -G\mathbf{x}_n + B\mathbf{u}_m$$

 $\mathbf{i}_m = L^T\mathbf{x}_n$

- > n is number of state variables,
- > m is the number of ports,
- \succ x_n is the vector of state variables ,
- C is storage element matrix,
- ➤ G is conductance matrix,
- B is position matrix for input ports,
- L is position matrix for output ports.

Krylov subspace

• Block moments

$$H(s) = M_0 + M_1 s + M_2 s^2 + \dots$$
$$A = -G^{-1}C \qquad R = G^{-1}B$$
$$M_i = L^T A^i R$$

• Block Krylov subspace

$$\begin{aligned} Kr(A,R,q) &= colsp[R,AR,A^2R,\ldots,A^{k-1}R, \\ & A^k r_0,A^k r_1,\ldots,A^k r_l] \\ & k = \lfloor q/m \rfloor, \qquad l = q-km. \end{aligned}$$

Krylov subspace projection based MOR

$$colsp(X) = Kr(A, R, q)$$

$$\tilde{C} = X^{T}CX \qquad \tilde{G} = X^{T}GX$$

$$\tilde{B} = X^{T}B \qquad \tilde{L} = X^{T}L$$

$$\tilde{C}\dot{\tilde{\mathbf{x}}}_{n} = -\tilde{G}\tilde{\mathbf{x}}_{n} + \tilde{B}\mathbf{u}_{m}$$

$$\mathbf{i}_{m} = \tilde{L}^{T}\tilde{\mathbf{x}}_{n}$$

Passivity preserved through congruent transformation

Hierarchical projection MOR: hiePrimor

• An illustrative example

Two subcircuits (I, II) are connected through the top circuit only.

Subcircuit I

• Sub MNA

$$\begin{bmatrix} G_1 & -G_1 & -1 \\ -G_1 & G_1 + G_2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ i_{u_1} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & C_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{v}_2 \\ \dot{i}_{u_1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ i_2 \end{bmatrix}$$

• Modified B matrix (add one current source)

$$B_1' = \begin{bmatrix} 0 & 0\\ 0 & 1\\ 1 & 0 \end{bmatrix}$$

Partitioned MNA

In general case

An n-way partitioned RLC circuit

• Top-level reduction

$$\tilde{G}\tilde{\mathbf{x}} + \tilde{C}\dot{\tilde{\mathbf{x}}} = \tilde{B}\mathbf{u}$$

Moment matching connection

- Final reduced model preserves the first k block moment.
- hiePrimor will have the same accuracy as the flat projection based method, if using the same reduced order.

Passivity preservation

- Transfer function: positive real, iff
 - (1) H(s) is analytic, for Re(s) > 0

(2)
$$H^*(s) = H(s^*)$$
, for $Re(s) > 0$

- (3) $H(s) + H(s^*)^T \ge 0$, for Re(s) > 0
- (1) and (2) are always satisfied for RLC circuits (no unstable poles and real response).
- Proof of (3) in detail can be found in our paper.

Circuit partitioning

- Use hMETIS partition tool suite.
- Minimize the capacitive cut to make sure a DC path if there are current sources.
- Reduce terminal counts of subcircuits as much as possible.
- Very suitable for very large RLC networks like bus, coupled transmission lines and clock nets with loosely coupled circuits.
- Also be applied to densely coupled circuits

Experimental Environment

- Use Matlab 7.0 for matrix/vector operations.
- Use Python as parser for I/O operations.
- Intel Xeon 3.0GHz dual CPU workstation with 2GB memory.
- Sparse matrix structure in Matlab.
- Test circuits are in SPICE format.
- Benchmarks: capacitively-coupled bus lines with different length.

Results (1)

 Accuracy comparison of PRIMA and hiePrimor in Ckt1 when k = 4, q = n × k.

Results (2)

 Accuracy comparison of PRIMA and hiePrimor in Ckt1 when k = 8, q = n × k.

Results (3)

- Reduction time comparison of PRIMA and hiePrimor for all test circuits.
- hiePrimor up to 5x faster.

Test Ckts	#Nodes	#Sub	#Ports	PRIMA (s)	hiePrimor (s)	Speedup
Ckt1	25k	2	8	5	4	1.25
Ckt2	50k	4	16	16	9	1.78
Ckt3	100k	8	16	32	13	2.46
Ckt4	200k	8	16	69	27	2.56
Ckt5	500k	16	24	248	60	4.13
Ckt6	800k	16	24	401	99	4.05
Ckt7	1M	16	32	863	154	5.60
Ckt8	1.5M	16	20	_	176	_

Results (4)

• For different numbers of partitions

Test Ckts	#Parts = 2	#Parts = 4	#Parts = 8	#Parts = 16
Ckt5	116	100	71	60
Ckt6	374	251	128	99
Ckt7	383	298	204	154
Ckt8	675	394	257	176

• For different numbers of ports (Ckt7)

#Ports	PRIMA	hiePrimor	Speedup
8	189	56	3.38
16	339	96	3.53
32	863	154	5.60

Results (5)

• Comparison in artificial parallel computing setting.

Test Ckts	Max Sub (s)	Top (s)	Sum (s)	Speedup
Ckt1	2	0	2	2.50
Ckt2	3	1	4	4.00
Ckt3	3	1	4	8.00
Ckt4	5	1	6	11.50
Ckt5	6	1	7	35.43
Ckt6	10	1	11	36.46
Ckt7	17	3	20	43.15
Ckt8	14	1	15	_

Conclusion

- Hierarchical projection based MOR: hiePrimor.
- Divide-and-conquer strategy to reduce the reduction complexity and speed up the reduction process.
- Same accuracy as flat MOR given the same reduced order.
- Preserving passivity.
- Parallel computing techniques.

Thank you!

