

Statistical Noise Margin Estimation for Sub-Threshold Combinational Circuits

Yu Pu^{1,2,3}, José Pineda de Gyvez ^{1,2}, Henk Corporaal¹ and Yajun Ha³

Technische Universiteit Eindhoven¹, The Netherlands NXP Research Eindhoven (TU/e)², The Netherlands National University of Singapore (NUS)³, Singapore

January 2007

Why Sub-threshold Operations?

- Utilize leakage current drivability
- Quadratic dynamic power saving
- Super-linearly reduced leakage power due to DIBL and GIDL effect
- Optimal energy/operation point exists in the sub-threshold region

Possible Applications

Sensor Network

Biomedical, in-vivo applications, etc.

Functional Yield: The Main Limitation

- The effective-to-idle current ratio (I_{eff}/I_{idle}) of a logic gate working in weak-inversion is 100~1000 times worse compared to in stronginversion
- Manufacturing variability further reduces the available noise margin, which may eventually lead to decoding failure (e.g., V_{DD}, V_T variations)

Methods for Noise Margin Enhancement

Approach I. ([2]-[5]):

- > ensuring enough noise margins for individual cells
- > neglects correlations between gates and results in a pessimistic estimation of the outputs noise margin. For instance, a gate that outputs higher V_{OL} (lower V_{OH}) can tolerate higher V_{OL} (lower V_{OH}) from its preceding gate
- Ignoring inter-cell correlations results in an overestimation of the minimum power supply V_{DD} and device sizes, thus an increase of power consumption

Methods for Noise Margin Enhancement

Approach II.

- Using Monte-Carlo Analog DC simulations to extract the noise margin
- Based on the extracted noise margin information, the designer can improve the robustness of the circuitry by means such as gate resizing, buffer insertion, logic restructuring and etc.
- Requires multiple iterations between noise margin extraction and circuit tuning
- > Prevent additional area and power overhead
- But, Very slow...Almost impossible for block with more than thousands of cells!

Strongly Calling for EDA support to promptly estimate noise margins!

Gate-Level Noise Margin Extraction (1)

$$R_{nMOS} = (I_{0n})^{-1} U e^{-(Vin - VIn)/nU}$$

$$R_{pMOS} = (I_{0p})^{-1} U e^{(Vin - V_{DD} - VT_{p})/nU}$$

$$V_{out} = \left\{ 1 + \left[e^{(Vin - X - V_{DD}/2)/nU} \right]^2 \right\}^{-1} V_{DD} \text{ where } X = (V_{Tn} + V_{Tp})/2$$

Gate-Level Noise Margin Extraction (2)

Gate-Level Noise Margin Extraction (3)

For an *N*-input gate, its output voltage can be expressed as a function

 $V_{out} = f(V_{in}, X, V_{DD})$

For example,

the output voltages of an N-input NAND and an N-input NOR gate can be expressed as

$$V_{out} = \left\{ 1 + \left[\sum_{i=1}^{N} \left[e^{\lambda i - (Vin_i - Xi - V_{DD}/2)/nU} \right] \right]^{-2} \right\}^{-1} V_{DD}$$
$$V_{out} = \left\{ 1 + \left[\sum_{i=1}^{N} \left[e^{\lambda i + (Vin_i - Xi - V_{DD}/2)/nU} \right] \right]^{2} \right\}^{-1} V_{DD}$$

 V_{in_i} is the voltage of the *ith* input $(V_{in_i} \in V_{in})$ X_i is the set of inputs $(X_i \in X_i)$ X_i and $X_i \sim N(\mu_{x_i}, \sigma_{x_i})$, λ_i is the *ith* fitted parameter.

Circuit-level noise margin information propagation (1)

Introduction to AA symbolic propagation

→ AA is capable of carrying correlation information. Along a propagation data-path, one *noise symbol* ε_i may contribute to the uncertainties of two or more variables.

→AA enables tighter range propagation through cancelling some uncertainties along data-path.

Circuit-level noise margin information propagation (2)

$$V_{output} = V_{output0} + \sum_{\forall (i,k)} \eta_{i,k} \mathcal{E}_{i,k}$$
$$\bigcup_{Vout \sim N(Vout0, \sum_{\forall (i,k)} \eta_{i,k}^{2})}$$

 $\varepsilon_{i,k}$ is an independent **noise symbol** and $\varepsilon_{i,k} \sim N(0,1)$. $\eta_{i,k}$ is the corresponding accumulated coefficient.

Experimental Results (1)

Simulation Setup:

- using the ISCAS combinational benchmark circuits
- performed for a CMOS 65nm Standard V_T (SVT) technology from NXP
- circuits are synthesized to netlists with minimum size logic gates
- gates that have more than 4 stacked transistors or 4 paralleled transistors are prevented to avoid severe robustness degradation
- VOL' (VOH') here is defined as the maximum (minimum) value among all the outputs 3 σ VOL (VOH), normalized w.r.t. V_{DD}.

Experimental Results (2)

Results from C880:

Bench mark	Sim	150mV		180mV		210mV		Running Time/
		V _{OL} '	V _{OH} '	V _{OL} '	V _{OH} '	V _{OL} '	V _{OH} '	Input Vector
C880	MC by Cadence	2.4%	84.6%	1.2%	92.2%	0.3%	96.2%	> 10 hours
	New	2.9%	85.4%	1.1%	93.7%	0.4%	97.4%	0.08sec

Estimated 3 o Statistical Noise Margin from Cadence Spectre Monte-Carlo DC Simulation and the New Approach

Experimental Results (3)

Results from other ISCAS combinational benchmarks

Bench		150mV		180	mV	210mV		RunningTime
- mark		V _{OL} '	V_{он}'	V _{OL} '	V _{oH} '	V _{oL} '	V_{он}'	(sec)
C1355	3σ	2.5%	85.0%	1.8%	93.7%	0.3%	97.4%	0.172
	6 σ	4.1%	73.2%	2.6%	88.8%	0.68%	95.4%	
C1908	3σ	2.4%	78.3%	1.7%	92.6%	0.4%	97.2%	0.204
	6 σ	4.3%	61.1%	2.3%	86.8%	0.7%	95.0%	
C2670	3 σ	3.0%	83.3%	1.2%	91.3%	0.4%	97.4%	0.484
	6 σ	8.0%	70.1%	2.0%	86.7%	0.73%	95.0%	
C3540	3 σ	3.4%	85.1%	1.1%	91.8%	0.4%	97.4%	0.688
	6 σ	6.2%	73.3%	1.95%	88.4%	0.68%	95.4%	
C5315	3σ	3.5%	77.2%	1.1%	92.6%	0.4%	97.2%	1.203
	6 σ	6.4%	59.4%	1.95%	88.9%	0.73%	95.1%	
C6288	3 σ	7.1%	78.9%	2.4%	92.7%	0.8%	97.2%	1.422
	6 σ	13.0%	62.2%	4.38%	86.9%	1.63%	95.0%	
C7552	3 σ	2.7%	78.4%	1.1%	92.7%	0.4%	97.4%	1.781
	6 σ	4.8%	61.2%	2.1%	86.8%	0.74%	95.1%	

Conclusion

- We have introduced a novel noise margin extraction methodology for sub-threshold combinational circuits
- We model the noise margin of individual cells at the gate-level based on an equivalent resistance model
- We also introduced the Affine Arithmetic model to efficiently calculate, propagate and estimate the output statistical noise margin, minimum functional VDD, as well as the functional yield of a circuit
- Experimental results show that our approach has 98.5% accuracy using MC simulations as a reference, but can remarkably reduce the running time by several orders of magnitude.

