Symmetry-Aware Placement with Transitive Closure Graphs for Analog Layout Design

L. Zhang⁽¹⁾, Y. Jiang⁽²⁾, C.-J. R. Shi⁽³⁾

⁽¹⁾ ECE, Memorial University, St. John's, Canada
⁽²⁾ ECE, University of Nevada, Las Vegas, USA
⁽³⁾ EE, University of Washington, Seattle, USA

Contents

Introduction

Review of prior work

- Symmetric-Feasible TCG
- Packing for Symmetric Placement
- Perturbation of Symmetric-Feasible TCG
- Experimental results
- Conclusions

Introduction

Present design process of analog integrated circuits

- Time-consuming hand-crafted layout
- Rough estimation and complex constraints
- Analog device/cell placement is one of the most significant stages in the layout synthesis
- Placement strategies for analog integrated circuits

Review of Prior Work

- Topological representations for digital layout placement design
- > Absolute-coordinate representation used in a few well-known analog layout automation systems
- O-tree and B*-tree for satisfying the analog symmetry constraints in the placement problem
 SP, TCG-S and TCG representations for analog placement problem

TCG Representation

Horizontal transitive closure graph G_h and vertical transitive closure graph G_v A valid TCG has three properties

Conversion Between SP and TCG

Given a SP, its corresponding TCG can be constructed in O(n²) time

- Given a TCG, its corresponding SP can be constructed in O(n) time
 - vertices in α -sequence are ordered incrementally according to the sum of in-degree in G_h and out-degree in G_v of each vertex
 - vertices in β -sequence are ordered incrementally according to the sum of in-degrees in both G_h and G_v of each vertex

TCG Symmetric-Feasibility Conditions

For $(a, a') \in \Gamma$ and $(b,b') \in \Gamma$, a TCG $(G_h \text{ and } G_v)$ representation is symmetric-feasible if both of the following conditions are satisfied:

in
$$G_h: a \models b \iff a' \models b$$

in $G_v: a \perp b \iff b' \perp a'$

where $\langle \neq \rangle$ denotes that the two cases before and after this symbol cannot simultaneously appear in the same TCG

Symmetric-Feasible TCG

- Lemma: Any placement containing a symmetry group can be represented with a symmetricfeasible TCG
- Four cases for two symmetric pairs/cells
 - two symmetric pairs
 - one symmetric-pair and one self-symmetric cell
 - two self-symmetric cells
 - two cells in one symmetric pair

Y-dimensional Symmetric Packing

Y-Dimensional Symmetric Packing Begin

4

5

6

8

End

- 1 construct the topological order of the TCG;
- 2 calculate the vertical longest path of the TCG based on the topological order;
- 3 for (each cell c_i in the topological order) {
 - if $(c_i$ has a symmetric counterpart c_i) {

if
$$(\Delta Y = c_i \cdot y - c_j \cdot y < 0)$$
 {

shift c_i and its G_v fan-out cells for - ΔY ; }

else if (
$$\Delta Y = c_i \cdot y - c_j \cdot y > 0$$
) {

shift c_j and its G_v fan-out cells for ΔY ; }}

X-dimensional Symmetric Packing

X-Dimensional Symmetric Packing

Begin

- construct the topological order of the TCG; 1
- calculate the horizontal longest path of the TCG based on the topological order; 2
- determine the symmetry axis, and label the symmetric cells, which are chosen to calculate the symmetry axis, as c_i 3 and c_i , $(i \leq j)$;
- for (any unprocessed symmetric cell c_s , i < s < j) { 4 5
 - if $(c_s$ has a symmetric counterpart c_t }
- shift symmetric pair (c_s, c_t) ; 6
- 7 mark c_s and c_t as processed; }}
- 8 for (any unprocessed symmetric cell c_s , $j \le s \le n$) {
- 9 if $(c_s \text{ has a symmetric counterpart } c_t)$
- shift symmetric pair (c_s, c_t) ; } 10
- else if $(c_s \text{ is a self-symmetric cell})$ { 11
- 12 symmetrically shift c_s ; }
- 13 mark $c_s(c_t)$ as processed; }
- 14 for (any unprocessed symmetric cell c_s , $0 \le s \le i$) {
- 15 if $(c_s \text{ has a symmetric counterpart } c_t)$
- 16 shift symmetric pair (c_s, c_t) ; }
- 17 else if $(c_s \text{ is a self-symmetric cell})$ {
- 18 symmetrically shift c_s ; }
- mark $c_s(c_t)$ as processed; } 19

End

Symmetric-Feasible TCG and Symmetric Placement

Lemma: Given a symmetric-feasible TCG containing a symmetry group, one can build a placement satisfying the positioning and the symmetry constraints in O(n²) time

Perturbation of Symmetric-Feasible TCG

- Three operations for TCG perturbation
 - vertex rotation
 - symmetric-swap
 - edge change
- Lemma: TCG is still symmetric-feasible and valid under the vertex-rotation operation, and this operation takes O(1) time
- Lemma: Given a symmetric-feasible TCG, the resulting TCG after a symmetric-swap operation is still symmetric-feasible and valid, and it takes O(1) time

Edge Change Operation

randomChangeTcgEdges

(Input: a symmetric-feasible TCG, Output: TRUE for a successful random edge-change operation and FALSE for a failure random edge-change operation)

Begin

- 1 randomly choose one vertex *a*;
- 2 if (*a* is symmetric) {
- 3 obtain the slack range of vertex *a* in the α (β -) sequence and save them into Set-A (Set-B);
- 4 in Set-A (Set-B), randomly pick up one vertex $b (a \neq b)$ and only keep the vertices between a and b (including b) in the corresponding set;
- 5 randomly choose to operate on Set-A or Set-B;
- 6 for (each vertex c in Set-A (Set-B)) {
- 7 move (move-reverse) the edge between a and c;
- 8 if (c is a symmetric vertex and the updated (a, c) or (a', c') violates symmetric-feasibility Eqs. (2) and (3)) {
 - the random edge change fails and return FALSE;}}}

10 else {

9

- 11 randomly pick up one vertex b ($a \neq b$);
- 12 obtain the vertices lying between *a* and *b* in the α (β -) sequence and save them into Set-A (Set-B);
- 13 for (each vertex c in Set-A (Set-B)) {
- 14 move (move-reverse) the edge between *a* and *c*;}}
- 15 the random edge change is successful and return TRUE;

End

Perturbation of Symmetric-Feasible TCG

- Lemma: Given a symmetric-feasible TCG, the perturbed TCG is still symmetric-feasible and valid under the certain edge change operation, and such an operation takes O(n) time
- Theorem: The solution space of symmetric-feasible TCG can be fully explored using random vertex rotation, symmetric-swap, edge change operations. The transformation of two neighboring solutions represented in TCG takes at most O(n) time

Experimental Results (I)

Coded in C++ and compared with other two approaches

- *AbsPlace*., one absolute placement scheme using absolute coordinates
- *SymmSP*, an implementation using SP symmetry-feasibility conditions
- Simulated-annealing based symmetry-aware TCG placement algorithm
- Dedicated cost function

$$C = \alpha_{area} C_{area} + \alpha_{nets} C_{nets} + \alpha_{size} C_{size}$$

Experimental Results (II)

Analog Circuits		AbsPlace	SymmSP	SymmTCG
Rail-to-rail Opamp	Cost	119.6%	106.2%	142643
	T (sec)	134.2%	94.5%	48
Commmode- feed. Opamp	Cost	126.6%	109.2%	306512
	T (sec)	136.3%	102.1%	72
Low-noise opamp	Cost	126.3%	105.7%	286559
	T (sec)	139.5%	104.2%	84
Comparator	Cost	140.1%	121.6%	19720
	T (sec)	152.5%	98.2%	118

Comparison of Approaches

Approaches		Packing	Perturbation	Completeness
SP	General	O(nlglgn)	<i>O(1)</i>	Yes
	Symm.	$O(n^2)$	O(1)	No
TCG-S	General	O(nlgn)	O(n)	Yes
	Symm.	$O(n^2)$	$O(n^2)$	No
TCG	General	$O(n^2)$	$O(n^2)$	Yes
	Symm. (this work)	$O(n^2)$	<i>O(n)</i>	Yes

CMOS Analog Comparator

Conclusions

- A set of TCG symmetric-feasible conditions is proposed
- Solution space of symmetric placements can be efficiently explored by evaluating symmetric-feasible TCGs
- Efficient strategy for generating random symmetricfeasible TCG representations while keeping TCG valid in O(n) time
- A new packing scheme for symmetric-feasible TCG in a simulated-annealing based placement algorithm

Symmetry-Aware Placement with Transitive Closure Graphs for Analog Layout Design

L. Zhang⁽¹⁾, Y. Jiang⁽²⁾, C.-J. R. Shi⁽³⁾

⁽¹⁾ ECE, Memorial University, St. John's, Canada
⁽²⁾ ECE, University of Nevada, Las Vegas, USA
⁽³⁾ EE, University of Washington, Seattle, USA