A New Global Router for Modern Designs

Jhih-Rong Gao and Pei-Ci Wu Synopsys Inc.

Ting-Chi Wang National Tsing Hua University

- Introduction
- Problem Formulation
- Methodology
- Experimental Results
- Conclusion

Introduction

- Problem Formulation
- Methodology
- Experimental Results
- Conclusion

Introduction

Fundamental VLSI design flow

- Placement results
- Obtain routing topology by global routing
- Obtain real routes by detailed routing
- Global router
 - Should provide high quality solution so that detailed router is able to find legal solution
 - A fast global router can be a good routability estimator in placement stage

Contribution

- NTHU-Route provide high-quality global routing result
- Iterative rip-up & reroute based global router
- Adaptive multi-source multi-sink maze routing
- Congested region identification method
- Final refinement process for bottleneck

Introduction

- Problem Formulation
- Methodology
- Experimental Results
- Conclusion

Problem Formulation

- Input: a set of nets to be routed over a grid graph G(V, E)
- Output: Steiner tree topologies for all nets

- Introduction
- Problem Formulation
- Methodology
- Experimental Results
- Conclusion

Our Methodology

Initial Congestion Map Construction

1. FLUTE

- Generate rectilinear
 Steiner minimal tree
- 2. Add ½ or 1 demand to edges

3. Edge Shifting

- Move some edges to less congested region without increasing wirelength
- 4. Add 1 demand to edges

Rip-up and Reroute Strategy

- The order of nets to be ripped up & rerouted affects the routing quality very much
- We propose an algorithm to identify congested regions and rip-up & reroute twopin nets with similar congestion at a time

Congested Region Identification

- Partition the interval between the maximum congestion value and 1 into *m* sub-intervals (*m*=10 in our current implementation)
 - Each congested edge belongs to a sub-interval
- For each sub-interval I_k
 - Expand a rectangular region *r* from each edge *e* in I_k until $avg_cong(r)$ is smaller than the lower bound of I_k

$$avg_cong(r) = \frac{\sum d(e_i)}{\sum s(e_i)}$$
 e_i is an edge inside r

- Find two-pin nets within the region
- For each 2-pin net in increasing order of size of bounding box
 - Monotonic routing
 - Adaptive multi-source multi-sink maze routing if necessary

An Example of Range Identification

Partition [2, 1]
 →{[2, 1.8), [1.8, 1.6), [1.6, 1.4),..., [1.2, 1)}

History Based Cost Function

$$cost_e = 1 + h_e \cdot p_e$$

Adaptive Multi-Source Multi-Sink Maze Routing

- General maze routing
 - One-source one-sink
- Multi-source multi-mink maze routing
 - Treat all grid points on one subtree as sources
 Another subtree as sinks
- Adaptive multi-source multi-mink maze routing
 - Treat only pins or Steiner points as sources and sinks
 - More efficient

Refinement

 Apply when iterative history based rip-ups and reroutes get stuck

 $\Box cost_e = 1 + h_e \cdot p_e$

- h_e dominates edge cost when *e* tends to be congested
- Use another cost function
 - □ If passing *e* induces overflow $\rightarrow cost_e = 1$

□ Otherwise $\rightarrow cost_e=0$

- Rip-up & reroute 2-pin nets in decreasing order of total overflow
 - Monotonic routing
 - Adaptive multi-source multi-sink maze routing if necessary

Extension for Multi-Layer Designs

Multi-layer design

- Each layer may have preferred routing direction
- Need via to connect different layers

- Introduction
- Problem Formulation
- Methodology
- Experimental Results
- Conclusion

Experimental Setup

Benchmarks

Benchmark	Grids	# nets
ibm01	64x64	11507
ibm02	80x64	18429
ibm03	80x64	21621
ibm04	96x64	26163
ibm06	128x64	33354
ibm07	192x64	44394
ibm08	192x64	47944
ibm09	256x64	50393
ibm10	256x64	64227

Benchmark	Grids	# nets		
adaptec1	324x324	219794		
adaptec2	424x424	260159		
adaptec3	774x779	466295		
adaptec4	774x779	515304		
adaptec5	465x468	867441		
newblue1	399x399	331663		
newblue2	557x463	463213		
newblue3	973x1256	551667		

ISPD98

ISPD07

- Machine: Linux system with 2.2G CPU and 8G memory
- Comparison bases
 - □ ISPD98: BoxRouter, FastRoute 2.0
 - □ ISPD07: FGR, MaizeRouter, BoxRouter

Results on ISPD98 Benchmarks

Benchmark	BoxRouter			FastRoute 2.0			Our algorithm			WL reduction	WL reduction
	OF	WL	Runtime(s)	OF	WL	Runtime(s)	OF	WL	Runtime(s)	BoxRouter	FastRoute 2.0
Ibm01	102	65588	8.3	31	68489	0.72	0	63321	4.17	-	-
Ibm02	33	178759	34.1	0	178868	0.93	0	170531	7.44	-	4.66%
Ibm03	0	151299	16.9	0	150393	0.60	0	146551	5.86	3.14%	2.55%
Ibm04	309	173289	23.9	64	175037	1.88	0	168262	13.61	-	-
Ibm06	0	282325	33.0	0	284935	1.36	0	278617	12.75	1.31%	2.22%
Ibm07	53	378876	50.9	0	375185	1.60	0	366288	15.89	-	2.37%
Ibm08	0	415025	93.2	0	411703	2.36	0	405169	13.17	2.37%	1.59%
Ibm09	0	418615	63.9	3	424949	1.92	0	415464	11.59	0.75%	2.23%
ibm10	0	593186	95.1	0	595622	2.79	0	580793	33.72	2.09%	2.49%
Average										1.93%	2.59%

Results on ISPD07 Benchmarks

Benchmark		FGR			MaizeRouter			BoxRouter			Our algorithm		
		Total OF	Max OF	Total cost (e5)	Total OF	Max OF	Total cost (e5)	Total OF	Max OF	Total cost (e5)	Total OF	Max OF	Total cost (e5)
	adaptec1	0	0	55.8	0	0	62.26	0	0	58.84	0	0	57.11
	adaptec2	0	0	53.69	0	0	57.23	0	0	55.69	0	0	54.46
	adaptec3	0	0	133.34	0	0	137.75	0	0	140.87	0	0	137.16
2-	adaptec4	0	0	126.05	0	0	128.45	0	0	128.75	0	0	128.66
layer	adaptec5	0	0	155.82	2	2	176.69	0	0	164.32	0	0	160.3
	newblue1	1218	10	47.51	1348	16	50.93	400	2	51.13	352	4	47.78
	newblue2	0	0	77.67	0	0	79.64	0	0	79.78	0	0	79.22
	newblue3	36970	1090	108.18	32588	1236	114.63	38976	1088	111.64	31800	608	111
	adaptec1	60	2	90.92	0	0	99.61	0	0	104.05	0	0	90.56
	adaptec2	50	2	92.19	0	0	98.12	0	0	102.97	0	0	92.17
	adaptec3	0	0	203.44	0	0	214.08	0	0	235.87	0	0	205.04
6-	adaptec4	0	0	186.31	0	0	194.38	0	0	211.95	0	0	188.43
layer	adaptec5	2480	2	264.58	2	2	305.32	0	0	298.08	0	0	265.03
	newblue1	2668	4	92.89	1348	16	101.74	400	2	101.83	352	2	90.91
	newblue2	0	0	136.08	0	0	139.66	0	0	155.07	0	0	136.01
	newblue3	53648	636	168.42	32840	1058	184.4	38976	1088	195.5	31800	204	168.4

Cost Reduction rates and Runtimes

Benchmark (2-layer)	Cost reduction over FGR	Cost reduction over MaizeRouter	Cost reduction over BoxRouter	Runtime(s)
adaptec1	-2.35%	8.27%	2.94%	5579.98
adaptec2	-1.43%	4.84%	2.21%	977.5
adaptec3	-2.86%	0.43%	2.63%	3802.87
adaptec4	-2.07%	-0.16%	0.07%	522.29
adaptec5	-2.88%	-	2.45%	15990.29
newblue1	-	-	-	2251.45
newblue2	-2.00%	0.53%	0.70%	210.21
newblue3	-	-	-	21380.57
Average	-2.26%	2.78%	1.83%	

Benchmark (6-layer)	Cost reduction over FGR	Cost reduction over MaizeRouter	Cost reduction over BoxRouter	Runtime(s)
adaptec1	-	9.09%	12.96%	5595.4
adaptec2	-	6.06%	10.49%	991.34
adaptec3	-0.79%	4.22%	13.07%	3843.31
adaptec4	-1.14%	3.06%	11.10%	558.28
adaptec5	-	-	11.09%	16045.34
newblue1	-	-	-	2261.67
newblue2	0.05%	2.61%	12.29%	230.44
newblue3	-	-	-	21412.59
Average	-0.62%	5.01%	11.83%	

- Introduction
- Problem Formulation
- Methodology
- Experimental Results
- Conclusion

Conclusion

- NTHU-Route -- A new global routing algorithm
 - Based on Iterative rip-up & reroute
 - Adaptive multi-source multi-sink maze routing
 - Congested region identification method
 - Final refinement process for bottleneck
- Achieve good solution quality
 - Solve all cases on ISPD98 benchmarks
 - Solve 6 of 8 cases on ISPD07 benchmarks
 - Obtain fairly low routing cost

Thank You

Q & A