A New Global Router for
Modern Designs

Jhih-Rong Gao and Pei-Ci Wu
Synopsys Inc.

Ting-Chi Wang
National Tsing Hua University

Outline

Introduction

Problem Formulation
Methodology
Experimental Results
Conclusion

‘ Outline

= Introduction

m Problem Formulation
s Methodology

m Experimental Results
m Conclusion

Introduction

Fundamental VLSI design flow

o Placement results

o Obtain routing topology by global routing
o Obtain real routes by detailed routing

Global router

o Should provide high quality solution so that
detailed router is able to find legal solution

o A fast global router can be a good routability
estimator in placement stage

Contribution

NTHU-Route — provide high-quality global
routing result

Iterative rip-up & reroute based global router
Adaptive multi-source multi-sink maze routing
Congested region identification method

Final refinement process for bottleneck

‘ Outline

N
= Problem Formulation
|
|

Problem Formulation

Global bins
Global bins

O [
Input: a set of nets to LT e-d--0--0
be routed over a grid | g0 |=| = C:)__]
graph G(V, E) R e e T
S gy I o000
- T =0
Output: Stelner tree ™ |m b= o--o0-0-0

topologies for all nets
Global edges Global edges

‘ Outline

= Methodology

Our Methodology

—

For severa
iterations

For sever
iterations

‘ Initial Congestion Map Construction

1. FLUTE

> Generate rectilinear
Steiner minimal tree

2. Add Y2 or 1 demand to
edges

3. Edge Shifting

> Move some edges to
less congested region
without increasing
wirelength

4. Add 1 demandto
edges

10

Rip-up and Reroute Strategy

The order of nets to be ripped up & rerouted
affects the routing quality very much

We propose an algorithm to identify
congested regions and rip-up & reroute two-
pin nets with similar congestion at a time

11

Congested Region Identitication

Partition the interval between the maximum congestion value
and 1 into m sub-intervals (m=10 in our current implementation)

o Each congested edge belongs to a sub-interval
For each sub-interval I,

o Expand a rectangular region r from each edge e in |, until
avg_cong(r) is smaller than the lower bound of I,

_2.d(e)
> s(e)

o Find two-pin nets within the region

For each 2-pin net in increasing order of size of bounding box
o Monotonic routing

o Adaptive multi-source multi-sink maze routing if necessary

avg _cong(r) e Is an edge insiate

12

An Example of Range Identification

Fr

6'1
46

ol
ah =
f =t
o .C 0 .,

>

]

S
8 15
16— |
6 1.5
5

H‘H‘H
g1 | o
H
o 00 O

= N -
H P D
O RPCOFLO =

H
o -
-

1.

= Partition [2, 1]

->{[2, 1.8), [1.8, 1.6), [1.6, 1.4),...,

[1.2, 1)}

13

History Based Cost Function

cost, =1+h, [,

a hg: the history of congestion on e
A {h; +1 if ehas overflov

35
e

h, otherwise w
0 P,: resultant congestion 25
0 = (d(e)+1)m ggnnjtej;)on i
© 0 S(e) ‘
o Sharing edges does not need %

additional cost

0.5 1 15

Congestion (m=5)

14

Adaptive Multi-Source Multi-Sink Maze
Routing

m General maze routing
o One-source one-sink

= Multi-source multi-mink maze routing
o Treat all grid points on one subtree as sources
o Another subtree as sinks

s Adaptive multi-source multi-mink maze
routing

o Treat only pins or Steiner points as sources
and sinks

o More efficient

15

- —_——

|
_/ / _/O
N o ¢ A ‘
// P4 // b pid
S \\\ n /// \\\
¢
()
c
@)
—— T T T T = e —_ T T T == ~
Ty T 8 Twg T
s AN =] s "\
/ \ @) / \
! Voo / \
o 6 [oo |
/ \\ n / X \\
\ — / O \ i /

~— —

-~ —_—

16

Adaptive multi-source muliing

Multi-source multi-sink

Refinement

Apply when iterative history based rip-ups and
reroutes get stuck

o cost,.=1+h, - p,

o h, dominates edge cost when e tends to be congested
Use another cost function

o If passing e induces overflow = cost =1

o Otherwise - cost =0

Rip-up & reroute 2-pin nets in decreasing order
of total overflow

o Monotonic routing

o Adaptive multi-source multi-sink maze routing if
necessary

17

Extension for Multi-Layer Designs

= Multi-layer design

o Each layer may have
preferred routing direction

o Need via to connect different
layers

18

‘ Outline

= Experimental Results

19

Experimental Setup

Benchmarks

Benchmark Grids # nets Benchmark Grids # nets
ibm0O1 64x64 11507 adaptecl 324x324 219794
ibm02 80x64 18429 adaptec?2 424x424 260159
ibm03 80x64 21621 adaptec3 774779 466295
ibm04 96x64 26163 adaptec4 774X779 515304
ibmO06 128x64 33354 adaptec5 465x468 867441
ibmO7 192x64 44394 newbluel 399x399 331663
ibm08 192x64 47944 newblue2 557x463 463213
ibm09 256x64 50393 newblue3 973x1256 551667
ibm10 256x64 64227

ISPD98 ISPDO7

Machine: Linux system with 2.2G CPU and 8G memory

Comparison bases
ISPD98: BoxRouter, FastRoute 2.0

a

a

ISPDO7: FGR, MaizeRouter, BoxRouter

20

Results on ISPD98 Benchmarks

BoxRouter FastRoute 2.0 Our algorithm WL reduction WL reduction
Benchmark over Over
OF WL Runtime(s) OF WL Runtime(s) OF WL Runtime(s) BoxRouter FastRoute 2.0
Ibm0O1 102 | 65588 8.3 31 | 68489 0.72 63321 4.17 - -
Ibm02 33 178759 34.1 0 | 178868 0.93 170531 7.44 - 4.66%
Ibm03 0 151299 16.9 0 | 150393 0.60 146551 5.86 3.14% 2.55%
Ibm04 309 | 173289 239 64 | 175037 1.88 168262 13.61 - -
Ibm06 0 282325 33.0 0 | 284935 1.36 278617 12.75 1.31% 2.22%
[bm07 53 378876 50.9 0 | 375185 1.60 366288 15.89 - 2.371%
Ibm08 0 415025 93.2 0 | 411703 2.36 405169 13.17 2.37% 1.59%
Ibm09 0 418615 63.9 3 | 424949 1.92 415464 11.59 0.75% 2.23%
ibm10 0 593186 95.1 0 | 595622 2.79 580793 33.72 2.09% 2.49%
Average 1.93% 2.59%

21

Results on ISPD07 Benchmarks

FGR MaizeRouter BoxRouter Our algorithm
Benchmark Total OF Max Total Total Max 'I;c:)t;l Total Max 'I;c:)t;l Total Max 'I;c:)t;l
OF cost (e5) OF OF (e5) OF OF (e5) OF OF (e5)
adaptecl 0 0 55.8 0 0 62.26 0 0 58.84 0 0 57.11
adaptec2 0 0 53.69 0 0 57.23 0 0 55.69 0 0 54.46
adaptec3 0 0 133.34 0 0 137.75 0 0 140.87 0 0 137.16
2. adaptecs 0 0 126.05 0 0 128.45 0 0 128.75 0 0 128.66
layer | adaptecs 0 0 155.82 2 2 176.69 0 0 164.32 0 0 160.3
newbluel 1218 10 47.51 1348 16 50.93 400 2 51.13 352 4 47.78
newblue? 0 0 77.67 0 0 79.64 0 0 79.78 0 0 79.22
newblue3 36970 1090 108.18 | 32588 | 1236 | 114.63 | 38976 | 1088 | 111.64 | 31800 | 608 111
adaptecl 60 2 90.92 0 0 99.61 0 0 104.05 0 0 90.56
adaptec2 50 2 92.19 0 0 98.12 0 0 102.97 0 0 92.17
adaptec3 0 0 203.44 0 0 214.08 0 0 235.87 0 0 205.04
6 adaptec4 0 0 186.31 0 0 194.38 0 0 211.95 0 0 188.43
layer | adaptecs 2480 2 264.58 2 2 305.32 0 0 298.08 0 0 265.03
newbluel 2668 4 92.89 1348 16 101.74 400 2 101.83 352 2 90.91
newblue? 0 0 136.08 0 0 139.66 0 0 155.07 0 0 136.01
newblue3 53648 636 168.42 | 32840 | 1058 | 184.4 | 38976 | 1088 | 1955 | 31800 | 204 | 168.4

pay

Cost Reduction rates and Runtimes

Benchmark (2-layer) Cost reduction over Cost reduction over Cost reduction over Runtime(s)
FGR MaizeRouter BoxRouter

adaptecl -2.35% 8.27% 2.94% 5579.98
adaptec2 -1.43% 4.84% 2.21% 9775
adaptec3 -2.86% 0.43% 2.63% 3802.87
adaptecs -2.07% -0.16% 0.07% 522.29
adaptecb -2.88% - 2.45% 15990.29
newbluel - - - 2251.45
newblue2 -2.00% 0.53% 0.70% 210.21
newblue3 - - - 21380.57
Average -2.26% 2.78% 1.83%

Benchmark (6-layer) Cost reduction over Cost reduction over Cost reduction over BoxRouter Runtime(s)

FGR M aizeRouter

adaptecl - 9.09% 12.96% 5595.4
adaptec2 - 6.06% 10.49% 991.34
adaptec3 -0.79% 4.22% 13.07% 3843.31
adaptecd -1.14% 3.06% 11.10% 558.28
adaptec5 - - 11.09% 16045.34
newbluel - - - 2261.67
newblue2 0.05% 2.61% 12.29% 230.44
newblue3 - - - 21412.59
Average -0.62% 5.01% 11.83%

‘ Outline

Introduction

Problem Formulation
Methodology
Experimental Results
Conclusion

24

Conclusion

NTHU-Route -- A new global routing
algorithm

o Based on Iterative rip-up & reroute

o Adaptive multi-source multi-sink maze routing
0 Congested region identification method

o Final refinement process for bottleneck

Achieve good solution quality

a Solve all cases on ISPD98 benchmarks

a Solve 6 of 8 cases on ISPDO7 benchmarks
o Obtain fairly low routing cost

25

Thank You

Q&A

