

ROUTABILITY DRIVEN MODIFICATION METHOD OF MONOTONIC VIA ASSIGNMENT FOR 2-LAYER BALL GRID ARRAY PACKAGES

Lokyo

Tec

Ω

20

ASP-DAC

2008

Department of Communications and Integrated Systems, Tokyo Institute of Technology, Japan

BACKGROUND

BGA Packages

- A number of connections
- High-density
- Consuming much time in manual routing

Automation

Routing Problem for BGA packages

Difficulty

- A number of nets in narrow area
- Tight Requirements

Characteristics

- Simple structure
- Near-monotonic netlist

Routing Method for 2-layer BGA

- Via placement
- Global routing design

PREVIOUS WORKS

- Single-layer
 - Monotonic pin assignment [ICCAD95, Yu et al.] [97, Shibata et al.]
 - Free-assignment flip chip routing [ICCAD05, Fang *et al.*]
 - Pre-assignment flip chip routing [DAC07, Fang *et al.*]
- Multi-layer (Give no via placements)
 - Layer assignment and routing for PGA [TCAD98, Tsai et al.]
 - Layer assignment and routing for BGA [ICCAD99, Chen *et al.*]

• Two-layer

 Iterative via placement modification [TCAD06, Kubo *et al.*] Generate via placement and global routes on layer 1 No global routes on layer 2

Our method proposed here (enhancement of Kubo's method)

- Improve computational complexity
- Generate global routes on layer 2

A MODEL OF 2-LAYER BGA PACKAGE

P-DAC 2008

VIA ASSIGNMENT Global routing depends on via assignment Bad via assignment Low routability High routability

MONOTONIC VIA ASSIGNMENT

OBJECTIVES

Generate **monotonic via assignment** and global routing

Monotonic routing patterns

(maximum wire congestion) \leq (allowable congestion)

Layer 1

Routing pattern generated on the routing graph

Connect all vias and balls without intersections

NG OK

OUTLINE OF OUR METHOD

Initial via assignment

Place vias near their balls under monotonic condition

Iterative via modification

Phase 1

Improve layer 1, Keep layer 2

Improve computation complexity

Phase 2 Improve layer 2, Keep layer 1

Introduce a new modification

9

Our contribution

ITERATIVE MODIFICATION OF PHASE 1

Objectives:

Layer 1 :

Improvetotal wire length
max wire congestionLayer 2 : (no global routing)
Keep via-ball distance small

By modification: EXC, ROT, MSEQ

Routes change

- Layer 1: drastic
- Layer 2: small

In each iteration, apply max gain modification

■ Max gain computation O(N²) → O(N)
■ Handling mold gates N : #(grid nodes)

MODIFICATIONS

[IEICE05, Kubo et al.]

11

ASP-DAC 2008

COST FUNCTION OF PHASE 1

COST GRAPH OF EACH VIA (KUBO'S COST GRAPH)

Our Cost Graph

Combine cost graphs of different vias |V| and |E| are O(N)Max. gain is obtained in O(N)

h,i,j g,h,i (\mathbf{z}) f,g,h k,g,h j (y) l,k,g e,k,g e,f,g i ,e,k ,1,**k** ,e,f g , ,e

ASP-DAC 2008

i,j,y

i,j,z

ITERATIVE MODIFICATION OF PHASE 2

Objectives: Layer 2 : (global routing) Improve completion ratio of nets Layer 1: Keep { total wire length max wire congestion } small

By modifications : CEXC Routes change Layer 1 : small Layer 2 : drastic

In each iteration, apply max gain modification

Generate global routing on layer 2Introduce a new modification

16

17ROUTING GRAPH • The routing graph for Via Assignment Φ via ball extra vertex Without a via With a via

• Correspond to the routing resource on layer 2

• Generate routes by the rip-up and reroute technique

COST FUNCTION OF PHASE 2

ASP-DAC 2008

EXPERIMENTS

• Implement our proposed method

- C++ language
- Intel Pentium 4, 3.4GHz
- 1GB memory

Inputs similar to practical cases are artificially generated

- Compare the execution time (Kubo's cost graph vs. Ours)
- Effect of CEXCs

RESULTS OF PHASE 1

10 times faster than Kubo's method

	#net	Kubo [sec]	Phase1 [sec]
data1	316	44.96	2.58
data2	192	8.37	0.86
data3	160	10.58	1.29
data4	160	9.57	1.09
data5	160	8.33	0.85

data1 data2 data3 data4 data5

Results of Phase 2

Improve completion ratio drastically

Connect all nets in four data

	#net	U	Δ	Phase 2 [sec]
data1	316	$11 \rightarrow 5$	$2.8 \rightarrow 2.8$	61.3
data2	192	3 → 0	$47.6 \rightarrow 40.0$	3.3
data3	160	$5 \rightarrow 0$	$7.3 \rightarrow 5.3$	4.3
data4	160	3 → 0	$11.5 \rightarrow 11.5$	2.3
data5	160	$0 \rightarrow 0$	$7.1 \rightarrow 2.8$	0.8

Exceed one wire between adjacent grid nodes

OUTPUT EXAMPLES (DATA4) Completion ratio is improved without changing routes on layer 1 drastically Output of Phase 1 Output of Phase 2

CONCLUSIONS

• Propose via assignment method based on Kubo's method

- In phase 1, 10 times faster than Kubo's method
- Improve the routability drastically and speedily

Future Work

- Initial via assignment
- Realization of plating leads on both layers
- Multi-layer via assignment and global routing

Quick package routing system by using properties of BGA package

Thanks for your attentions !

#VERTICES AND #EDGES IN OUR COST GRAPH

26

In our experiments, $\alpha_1 = \beta_1 = \gamma_1 = 1$ $\alpha_1, \beta_1, \gamma_1 << \delta_1$

COST FUNCTION OF PHASE 2

Wire congestion violations on L1 \land

(violation) = MAX{(wire congestion) – (allowable congestion), 0}

Wire length on L2 | L

Total wire length on the routing graph

Unconnected nets on L2 U

#(unconnected nets on the routing graph)

 $COST_2(\Phi) = \alpha_2 \Delta + \beta_2 L + \gamma_2 U$ In our experiments, $\alpha_2 = 1, \beta_2 = \frac{1}{4}$ $\alpha_2, \beta_2 << \gamma_2$