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Overview
Introduction

› Power dissipation increases dramatically 
» As the technology scales down.

› To maximize the power reduction
» We combine placement, gate sizing, and multi-Vt techniques
» How to integrate techniques with disjoint objectives?  

The proposed methodology 
› Integrate placement, gate sizing and Vt-swapping
› Linear Programming based placement for power
› Geometric Programming based gate sizing for power

» Gate sizing on critical paths
» Gate sizing on non-critical paths

Experimental results
Conclusions
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Power Consumption Trend

Dynamic power still dominates
The percentage of the leakage power increases as 
technology scales down

Sw itching 32%

Leakge 
36.00%

Internal
32%

AMD 65 nm

Source: Synopsys, Inc.
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Power Optimization Techniques
Power optimization techniques

› Pswitch + Pleak = α f  CL VDD
2  + k wi

› α :  switching factor
› f   :  frequency 
› CL :  capacitive load
› k   :  parameter for leakage 
› Wi :  size of gate i

α f  CL VDD
2  + k wi

Gate sizing

Dual-VddPlacement Multi-Vt

Clock gating Gate sizing

Placement Multi-Vt
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Maximize the Power Reduction

Physical synthesis techniques that affect 
the power
› Placement

» Reduce the length of nets with high switching rate
› Gate sizing

» Choose the minimum gate sizes satisfying the 
timing constraints

› Vt swapping: 
» LowVt (LVT) is used to close timing on critical 

paths
» HighVt (HVT) is used to reduce leakage on non-

critical paths
» RegularVt (RVT) for other cells.
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Maximize the Power Reduction

How to integrate above techniques to maximize 
the power reduction? 

› Timing and power are often conflict objectives
› Those techniques can be used for either timing and 

power
› Above techniques affect each other

» Using smaller gate sizes improves the power but increases 
the delay. 

» HVT reduces the power but hurts the timing.
» We can use large gate sizes and less LVTs, or smaller gate 

sizes and more LVTs, etc. 
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Improve the Slack Distribution

Vt swapping is the most effective technique for 
leakage reduction

› Using high threshold voltage has exponential saving 
on leakage

» Leakage current is exponential to Vt, and linear to 
gate size

We may use gate sizing to help Vt-swapping

AMD 65-nm cell
LVT RVT HVT

Delay 1.0 1.1 1.3
Leakage 17.3 2.4 1.0
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Improve the Slack Distribution
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The effectiveness of Vt-swapping relies on the slack profile.
› Integrate those techniques through the slack profile management
› Placement and gate sizing are formulated to improve the slack profile

» For more effective Vt swapping finally 
» use more HVTs and less LVTs overall
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Linear Program formulation
Variables: cell coordinates 

Delay models
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LP based Power Aware Placement 

Select a set of critical paths
› Linear program to minimize the sum of weighted nets. 
› Two major components on net weights

» The timing weight is based on the delay sensitivity of the net. 
» The power weight is based on nets switching factor 
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Geometric Programming (GP) Preliminary

Static timing analysis
› AATi = max{AAT1, AAT2}+Di

› RATi= min { RAT3-D3, RAT4-D4}
› Di = di + hi/Wi

› Wi: the size of gate i

AAT1

AATi
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AAT2

1

2

3

4

i
RATi



12

GP based Gate Sizing for Near 
Critical Cells

Effort based delay models

For critical and near critical cells
› Maximize the sum of slack on critical primary outputs
› Increase the size of critical cells and push the slack of near 

critical cells to be more positive, but not larger than a threshold. 
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GP Gate Sizing for Non-Critical Cells
Sizing down cells with large slacks directly

Additional constraints
› Short-circuit power constraint, 

» Short circuit power could be large if not properly controlled

› Maximum slew constraint
› Effective fan-out constraint (control the noise)
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The Overall Flow

Slack improved ?

Critical path gate sizing opt. 

non-critical gate sizing opt.

Keep

Discard 

Slack improved ?

Critial path placement opt.

Vth swapping opt.

No improvement ? Yes

No

Yes

No

No

Yes

Initial design database

Exit

Pre-routing est.  
Parasitic est. 

Primetime Timing 

Updating timing into
design database

Timing Analysis 
after each step 

Legalize
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Experimental Results
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Leakage Power Breaks Down

Leakage power consumption before and after 
optimization

› Leakage is reduced effectively
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Vt Percentages and Runtime
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Conclusions

We propose the methodology to integrate several physical synthesis 
techniques

› To maximize the leakage and total power reduction through the slack 
profile management. 

Our LP based placement and GP based gate sizing algorithms 
maximize the effectiveness of the multi-Vt swapping technique for 
power reduction. 
Various practical design constraints are included in our formulation

› Short circuit power is not ignorable
Our proposed method is very effective

› Achieved 63.8% leakage power reduction and 32.8% overall power 
reduction on 65nm microprocessor circuits.
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