

# Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques

Tao Luo, David Newmark\*, and David Z Pan Department of Electrical and Computer Engineering, University of Texas at Austin \*Advanced Micro Devices, INC.

## **Overview**

## Introduction

- Power dissipation increases dramatically
  - » As the technology scales down.
- > To maximize the power reduction
  - » We combine placement, gate sizing, and multi-Vt techniques
  - » How to integrate techniques with disjoint objectives?
- The proposed methodology
  - > Integrate placement, gate sizing and Vt-swapping
  - > Linear Programming based placement for power
  - Geometric Programming based gate sizing for power
    - » Gate sizing on critical paths
    - » Gate sizing on non-critical paths
- Experimental results
- Conclusions

## **Power Consumption Trend**

- Dynamic power still dominates
- The percentage of the leakage power increases as technology scales down





Source: Synopsys, Inc.

## **Power Optimization Techniques**

### Power optimization techniques

- >  $P_{switch} + P_{leak} = \alpha f C_L V_{DD}^2 + k w_i$
- >  $\alpha$  : switching factor
- > f : frequency
- > C<sub>L</sub>: capacitive load
- > k : parameter for leakage
- > W<sub>i</sub> : size of gate i



## Maximize the Power Reduction

- Physical synthesis techniques that affect the power
  - > Placement
    - » Reduce the length of nets with high switching rate
  - > Gate sizing
    - » Choose the minimum gate sizes satisfying the timing constraints
  - > Vt swapping:
    - » LowVt (LVT) is used to close timing on critical paths
    - » HighVt (HVT) is used to reduce leakage on noncritical paths
    - » RegularVt (RVT) for other cells.

## Maximize the Power Reduction

- How to integrate above techniques to maximize the power reduction?
  - > Timing and power are often conflict objectives
  - Those techniques can be used for either timing and power
  - > Above techniques affect each other
    - » Using smaller gate sizes improves the power but increases the delay.
    - » HVT reduces the power but hurts the timing.
    - » We can use large gate sizes and less LVTs, or smaller gate sizes and more LVTs, etc.

## Improve the Slack Distribution

- Vt swapping is the most effective technique for leakage reduction
  - Using high threshold voltage has exponential saving on leakage
    - » Leakage current is exponential to Vt, and linear to gate size

| AMD 65-nm cell |      |     |     |  |  |
|----------------|------|-----|-----|--|--|
|                | LVT  | RVT | HVT |  |  |
| Delay          | 1.0  | 1.1 | 1.3 |  |  |
| Leakage        | 17.3 | 2.4 | 1.0 |  |  |

We may use gate sizing to help Vt-swapping

## **Improve the Slack Distribution**

The effectiveness of Vt-swapping relies on the slack profile.

- Integrate those techniques through the slack profile management
- > Placement and gate sizing are formulated to improve the slack profile
  - » For more effective Vt swapping finally
  - » use more HVTs and less LVTs overall



## **Linear Program formulation**

#### Variables: cell coordinates

$$l_{j} \leq x_{i} + pin_{x}(i, j)$$

$$r_{j} \geq x_{i} + pin_{x}(i, j)$$

$$t_{j} \leq y_{i} + pin_{y}(i, j)$$

$$b_{j} \geq y_{i} + pin_{y}(i, j), \qquad i = 1, 2, ..., k$$

$$L_{j} = r_{j} - l_{j} + t_{j} - b_{j}$$

$$Cap_{j} = c \cdot L_{j} + Cpin_{j}$$



#### Delay models

$$Dp_i = dp_I + a1_i \cdot Slew_i + a2_i \cdot Cap_i$$
$$Sp_i = sp_I + u1_i \cdot Slew_i + u2_i \cdot Cap_i$$

## LP based Power Aware Placement

#### Select a set of critical paths

- > Linear program to minimize the sum of weighted nets.
- > Two major components on net weights
  - » The timing weight is based on the delay sensitivity of the net.
  - » The power weight is based on nets switching factor

$$\begin{split} \min & \sum wt_j L_j \\ \forall j \in Selected \quad critical \quad nets \\ wt_p &= 0.5\alpha_i \cdot F \cdot V^2 \\ wt_t &= a2_i + a1_{i+1} \cdot u2_i \\ wt_j &= \beta wt_p + (1 - \beta) wt_t \end{split}$$

## **Geometric Programming (GP) Preliminary**

## Static timing analysis

- >  $AAT_i = max{AAT_1, AAT_2}+D_i$
- >  $RAT_i = min \{ RAT_3 D_3, RAT_4 D_4 \}$
- >  $D_i = d_i + h_i/W_i$
- > W<sub>i</sub>: the size of gate i



# GP based Gate Sizing for Near Critical Cells

Effort based delay models

 $L_i = leak_i \cdot W_i$ 

$$Dg_{i} = dg_{I} + (h_{i}/W_{i}) \cdot Cap_{i}$$

$$Sg_{i} = sg_{I} + (v_{i}/W_{i}) \cdot Cap_{i}$$

$$Cap_{i} = \sum_{k=1}^{a} (e_{k} + f_{k}W_{k}) + \sum_{l=1}^{b} (Cp_{l}) + Cap_{wire}$$

$$Cp_{i} = e_{i} + f_{i}W_{i}$$

$$P_{i} = 0.5\alpha \cdot F \cdot V^{2} \cdot Cap_{i}$$

- For critical and near critical cells
  - > Maximize the sum of slack on critical primary outputs
  - > Increase the size of critical cells and push the slack of near critical cells to be more positive, but not larger than a threshold.

# **GP Gate Sizing for Non-Critical Cells**

### Sizing down cells with large slacks directly

min  $\sum (\Delta P g_i / \Delta W_i)$   $i \in NC$ 

s.t. 
$$AT_i \ge \max\{(T_{cycle} - T_{threshold}), AT_{orig_i}\}, i \in PO$$

- Additional constraints
  - Short-circuit power constraint,
    - » Short circuit power could be large if not properly controlled



- > Maximum slew constraint
- > Effective fan-out constraint (control the noise)

## **The Overall Flow**



## **Experimental Results**

|      | indie 1. Four power comparison |       |                  |        |        |               |         |         |          |
|------|--------------------------------|-------|------------------|--------|--------|---------------|---------|---------|----------|
|      | 65 nm                          |       | Total power (mw) |        |        | Improvement % |         |         |          |
|      | Gates                          | Nets  | Base             | VT     | PV     | PGV           | VT Base | PV Base | PGV Base |
| ckt1 | 1765                           | 2360  | 29.79            | 24.60  | 22.06  | 20.52         | 17.4    | 25.9    | 31.1     |
| ckt2 | 2334                           | 2881  | 30.26            | 22.41  | 21.93  | 19.69         | 25.9    | 27.5    | 34.9     |
| ckt3 | 6640                           | 8644  | 142.51           | 103.45 | 101.31 | 96.11         | 27.4    | 28.9    | 32.6     |
| ckt4 | 9254                           | 7928  | 110.86           | 93.57  | 93.57  | 86.38         | 15.6    | 15.6    | 22.1     |
| ekt5 | 9541                           | 9539  | 233.56           | 151.81 | 147.23 | 123.40        | 35.0    | 37.0    | 47.2     |
| ckt6 | 12716                          | 14042 | 241.27           | 155.89 | 154.14 | 140.43        | 35.4    | 36.1    | 41.8     |
| ckt7 | 15486                          | 18360 | 287.22           | 233.63 | 226.96 | 217.14        | 18.7    | 21.0    | 24.4     |
| ckt8 | 27103                          | 26991 | 499.15           | 377.34 | 372.51 | 354.58        | 24.4    | 25.4    | 29.0     |
|      |                                |       |                  |        |        |               | 25.0    | 27.2    | 32.9     |

Table 1: Total power comparison

Table 2: Leakage power comparison

Table 3: Dynamic power comparisoneVTPGVVT |Base %

PGV Base%

10.6

14.7

12.9

10.4

25.2

14.9

8.3

9.0

13.3

|      | Base   | VT     | PGV   | VT Base % | PGV Base % |      | Base   | VT     | PGV    | VT   |
|------|--------|--------|-------|-----------|------------|------|--------|--------|--------|------|
| ckt1 | 10.50  | 6.09   | 3.28  | 42.0      | 68.8       | ckt1 | 19.29  | 18.51  | 17.24  | 4.0  |
| ckt2 | 11.49  | 4.79   | 3.67  | 58.3      | 68.1       | ckt2 | 18.77  | 17.62  | 16.02  | 6.1  |
| ckt3 | 52.11  | 20.10  | 17.38 | 61.4      | 66.6       | ckt3 | 90.40  | 83.35  | 78.73  | 7.8  |
| ckt4 | 45.76  | 30.42  | 28.06 | 33.5      | 38.7       | ckt4 | 65.10  | 63.15  | 58.32  | 3.0  |
| ckt5 | 93.04  | 26.62  | 18.28 | 71.4      | 80.4       | ckt5 | 140.52 | 125.19 | 105.12 | 10.9 |
| ckt6 | 99.29  | 24.78  | 19.64 | 75.0      | 80.2       | ckt6 | 141.98 | 131.11 | 120.79 | 7.7  |
| ckt7 | 104.77 | 60.25  | 49.86 | 42.5      | 52.4       | ckt7 | 182.45 | 173.38 | 167.28 | 5.0  |
| ckt8 | 215.24 | 108.46 | 96.28 | 49.6      | 55.3       | ckt8 | 283.91 | 268.88 | 258.30 | 5.3  |
|      |        |        |       | 54.2      | 63.8       |      |        |        |        | 6.2  |

## Leakage Power Breaks Down

## Leakage power consumption before and after optimization



#### > Leakage is reduced effectively



## **Vt Percentages and Runtime**

### Use a few low Vt cells only



| Table 4: Runtime breakup(s) |                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Place                       | Size                                                            | Swap                                                                                                                                                                                                                                         | Timing                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 4                           | 14                                                              | 55                                                                                                                                                                                                                                           | 168                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 3                           | 12                                                              | 69                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 30                          | 75                                                              | 124                                                                                                                                                                                                                                          | 453                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 25                          | 42                                                              | 137                                                                                                                                                                                                                                          | 217                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 26                          | 68                                                              | 149                                                                                                                                                                                                                                          | 324                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 32                          | 228                                                             | 171                                                                                                                                                                                                                                          | 262                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 16                          | 193                                                             | 186                                                                                                                                                                                                                                          | 342                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 43                          | 384                                                             | 245                                                                                                                                                                                                                                          | 538                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                             | e 4: Rur<br>Place<br>4<br>3<br>30<br>25<br>26<br>32<br>16<br>43 | e 4: Runtime b           Place         Size           4         14           3         12           30         75           25         42           26         68           32         228           16         193           43         384 | e 4: Runtime breakup(           Place         Size         Swap           4         14         55           3         12         69           30         75         124           25         42         137           26         68         149           32         228         171           16         193         186           43         384         245 |  |  |  |  |

| ble   | 4: | Runtime | breal | kup( | (s |
|-------|----|---------|-------|------|----|
| ~ ~ ~ |    |         |       |      | ~~ |

## Conclusions

- We propose the methodology to integrate several physical synthesis techniques
  - > To maximize the leakage and total power reduction through the slack profile management.
- Our LP based placement and GP based gate sizing algorithms maximize the effectiveness of the multi-Vt swapping technique for power reduction.
- Various practical design constraints are included in our formulation
  - > Short circuit power is not ignorable
- Our proposed method is very effective
  - Achieved 63.8% leakage power reduction and 32.8% overall power reduction on 65nm microprocessor circuits.