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Overview

NG _
- ¢ Introduction

Power dissipation increases dramatically
As the technology scales down.

To maximize the power reduction
We combine placement, gate sizing, and multi-Vt techniques
How to integrate techniques with disjoint objectives?

The proposed methodology
Integrate placement, gate sizing and Vt-swapping
Linear Programming based placement for power

Geometric Programming based gate sizing for power
Gate sizing on critical paths
Gate sizing on non-critical paths

Experimental results
Conclusions



Power Consumption Trend

-
‘ ¢+ Dynamic power still dominates

¢+ The percentage of the leakage power increases as
technology scales down
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Power Optimization Techniques
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| ¢+ Power optimization techniques
P +P=a f C V2 +Kkw,

switch leak —

)

» a : switching factor

» f . frequency

» G, : capacitive load

> k : parameter for leakage
> W. : size of gate i

Placement Dual-vVdd Multi-Vt
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Maximize the Power Reduction
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e Physical synthesis techniques that affect
the power

» Placement
» Reduce the length of nets with high switching rate

» Gate sizing

» Choose the minimum gate sizes satisfying the
timing constraints

» Vt swapping:
» LowVt (LVT) is used to close timing on critical
paths

» HighVt (HVT) is used to reduce leakage on non-
critical paths

» RegularVt (RVT) for other cells.
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Maximize the Power Reduction
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"+ How to Integrate above techniques to maximize
the power reduction?
» Timing and power are often conflict objectives

» Those techniques can be used for either timing and
power

> Above techniques affect each other

» Using smaller gate sizes improves the power but increases
the delay.
» HVT reduces the power but hurts the timing.

» We can use large gate sizes and less LVTs, or smaller gate
sizes and more LVTs, etc.



Improve the Slack Distribution
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eVt swapping is the most effective technique for
leakage reduction

» Using high threshold voltage has exponential saving
on leakage

» Leakage current is exponential to Vt, and linear to
gate size

AMD 65-nm cell

LVT | RVT | HVT
Delay 1.0 1.1 1.3
Leakage 173 | 24 1.0

¢ We may use gate sizing to help Vt-swapping



Improve the Slack Distribution
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‘o The effectiveness of Vt-swapping relies on the slack profile.
» Integrate those techniques through the slack profile management

> Placement and gate sizing are formulated to improve the slack profile
» For more effective Vt swapping finally
» use more HVTs and less LVTs overall

Slack distribution
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Linear Program formulation
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| ¢ Variables: cell coordinates

|, < x; + pin (i, j)
ri = x; + pin (i, J)
t; <y + pin (i, j)
b, >y, + pin,(i,j), i=12.,k
szrj—lj+tj—bj
Cap ; =c-L;+ Cpin

¢+ Delay models

Dp. =dp, +al, - Slew, + a2, - Cap.
Sp, =sp, +ul - Slew, +u2. -Cap,




LP based Power Aware Placement
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‘ ¢ Select a set of critical paths

» Linear program to minimize the sum of weighted nets.

> Two major components on net weights
» The timing weight is based on the delay sensitivity of the net.
» The power weight is based on nets switching factor

min > wtL,

V) € Selected critical nets
wt, =0.5¢; - F V2

wt, =a2 +al , -u2

wt; = pwt ) + (1 B)wt,
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Geometric Programming (GP) Preliminary
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¢ Static timing analysis
) AAT, = max{AAT,, AAT,}+D,
) RAT= min { RAT,-D,, RAT,-D,}
» D;=d +hy/W,
> W.: the size of gate i
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GP based Gate Sizing for Near

_Lritical Cells
| + Effort based delay models
Dg; = dgr+ (h;/W;) - Cap;
Sgi = sgr+ (vi/Wi) - Cap;

a &

Cap; = ) (ex+ fiWk)+ 2. (Cp1) + Capyire
=1 i=1

Cpi=ei+ fiWi
P=0.50-F-V? Cap;
Lj = fﬁﬂkj . H”}

¢ For critical and near critical cells
> Maximize the sum of slack on critical primary outputs

» Increase the size of critical cells and push the slack of near
critical cells to be more positive, but not larger than a threshold.
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GP Gate Sizing for Non-Critical Cells
—Y

| ¢ Sizing down cells with large slacks directly

min > (APg; /AW,) ieNC
S.L. ATI 2 max{(TcycIe _Tthreshold)’ ATorigi}’i < PO

¢+ Additional constraints

> Short-circuit power constraint,
» Short circuit power could be large if not properly controlled

Power

Otput
_/_ _\_ . -
| 10
nbrt | s
g Output cap 0

Delayl 7 >
nput slew Input slew

> Maximum slew constraint
» Effective fan-out constraint (control the noise)
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The Overall Flow

Initial desig

n database

v

No improvement ?

Yes

v

Critial path pl

acement opt.

Legalize

Critical path gate sizing opt.

Yes

Slack im

{

}No

A 4

non-critical gate sizing opt.

A

y

Vth swapping opt.

\

y

CEit )

14

Discard

Timing Analysis
after each step

Pre-routing est.
Parasitic est.

Primetime Timing

Updating timing into
design database




Experimental Results
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‘ Table 1: Total power comparison
65 nm Total power (mw) Improvement %
Gates |Nets | Base |VIT |PV | PGV VT |Base | PV|Base | PGV |Base

cktl | 1765 | 2360 || 29.79 | 24.60 | 22.06 | 20.52 174 259 31.1

ckt2 | 2334 | 2881 30.26 | 22.41 | 21.93 | 19.69 || 259 27.5 34.9

ckt3 | 6640 | 8644 142.51 | 103.45 | 101.31 | 96.11 274 28.9 32.6

ckt4 | 9254 | 7928 110.86 | 93.57 | 93.57 | 86.38 15.6 15.6 22.1

ckt5 | 9541 | 9539 || 233.56 | 151.81 | 147.23 | 123.40 || 35.0 37.0 47.2

ckté | 12716 | 14042 || 241.27 | 155.80 | 154.14 | 14043 || 354 36.1 41.8

ckt7 | 15486 | 18360 || 287.22 | 233.63 | 226.96 | 217.14 || 18.7 21.0 24.4

ckt8 | 27103 | 26991 | 499.15 | 377.34 | 372.51 | 354.58 || 244 254 29.0

25.0 27.2 32.9

Table 2: I.eakage power comparison Table 3: Dynamic power comparison
Base | VT PGV | VT|Base % | PGV |Base % Base | VT PGV | VT |Base % | PGV |Base%
cktl | 10.50 | 6.09 328 | 420 68.8 cktl | 19.29 | 18.51 17.24 | 4.0 10.6
ckt2 | 1149 | 4.79 3.67 | 583 68.1 ckt2 | 18.77 | 1762 | 16.02 | 6.1 14.7
ckt3 | 52.11 | 20.10 | 17.38 | 614 66.6 ckt3 | 0040 | 8335 | 7873 |78 12.9
cktd | 4576 | 3042 | 28.06 | 33.5 38.7 ckt4 | 65.10 | 63.15 5832 | 3.0 10.4
ckt5 | 93.04 | 26.62 | 18.28 | 714 804 ckts | 140.52 | 125.19 | 105.12 | 10.9 25.2
ckt6 | 99.29 | 2478 | 19.64 | 75.0 80.2 ckt6 | 141.98 | 131.11 | 120.79 | 7.7 14.9
ckt? | 104.77 | 60.25 | 49.86 | 42.5 52.4 ckt7 | 182.45 | 173.38 | 167.28 | 5.0 8.3
ckt8 | 215.24 | 108.46 | 96.28 | 49.6 55.3 ckt8 | 283.91 | 268.88 | 25830 | 5.3 9.0

542 63.8 6.2 13.3
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L eakage Power Breaks Down
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e Leakage power consumption before and after
optimization
» Leakage is reduced effectively
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Vt Percentages and Runtime
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¢+ Use a few low V1t cells only

100%
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Table 4: Runtime breakup(s)

Testcases | Place | Size | Swap | Timing
cktl 4 14 55 168
ckt2 3 12 69 90
ckt3 30 75 124 453
ckt4 25 42 137 217
ckt5 26 68 149 324
ckt6 32 228 171 262
ckt7 16 193 186 342
ckt8 43 384 245 538
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Conclusions

We propose the methodology to integrate several physical synthesis
techniques

> To maximize the leakage and total power reduction through the slack
profile management.

Our LP based placement and GP based gate sizing algorithms
maximize the effectiveness of the multi-Vt swapping technique for
power reduction.

Various practical design constraints are included in our formulation
»  Short circuit power is not ignorable

Our proposed method is very effective

> Achieved 63.8% leakage power reduction and 32.8% overall power
reduction on 65nm microprocessor circuits.
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