IMEC

Enabling Run-Time Memory Data Transfer
Optimizations at the System Level with
Automated Extraction of Embedded

Software Metadata Information

—

\YA Thrace Gree e
' adrld Spain L
it
. Leuven, Belgium

imec

Introduction — Motivation

—
N

©

rendering

.

e Wireless
Scalable video multiplayer

games

New Dynamic

Multi-threaded + |®

Applications

Platforms (PDAs, Mobiles, etc.)

Limited _ Need for optimized
Resources DMA usage

< Analyze concurrent accesses to DRAMs
— Multi-threaded embedded network system

— Use of real wireless input traces

- Allow early stage identification of block
transfers of Dynamic Data Types
(e.g., linked lists) from source code

= Derive optimization for DMA usage and
design from Software and Hardware
Metadata

Avalilable DMA Options

= Typical use:
— Programmer writes loops to process data from arrays

— Programmer identifies potential block transfers

e To move data in the memory hierarchy
e To transfer data between buffers (processing or 1/0).
— Block transfer primitives are applied manually (memcpy or

DMA calls)
= We propose:

— Tool-flow to automatically identify potential block transfers
of Dynamic Data Types in early design stages

— Tuning Software Metadata: adjust minimum block transfer
size that is done with the DMA

— Parameterizing Hardware Metadata: maximum number
of cycles that the DMA can keep the bus without being

interrupted by the processor -
“ |

Presentation Overview

e Introduction — Motivation
- Software Metadata

= Methodology Overview

- Experimental Results

e Conclusions — Future Work

Cimee

What I1s Software Metadata?

- We define as Software Metadata the
representation of the characteristics of
dynamic applications is respect of:

— Requested memory footprint

— Data access behaviour

« ... whereas Hardware Metadata describe

the characteristics of the platform

— Allowing easily design, test and verify hardware
platforms [SPIRIT Consortium — IP-XACT]

imee

Methodology Overview

Transfers

Identified Block

Multithreaded
Profiling Applications
Step 2:

Analysis Ve
Identification of Ac;g:&
Data Transfers g

Raw
information
Step 3:

Addition of data
transfer directives
considering input

Metadata
information

/

scenarios

Input
Scenarios

I—-l-—-l—-ll
-

Application
source code + |
tailored data .
“transfer directives

Stepl: Raw Information Extraction

- Profile the dynamic applications

— Using as many realistic inputs as possible/within
time limits, etc.

e How do we do it? - using Profiling
Templates

— Manual, typed-based approach

— Each variable type (for the variable we are
Interested in) is annotated

— The propagation of the type-change is performed
by the compiler

— Windows + Linux

— 2-3x slower execution time

Cimee

What information do we capture?

= Allocation and de-allocation of the dynamic
memory, identified by the specific variable In
the application

- Dynamic memory accesses (reads and writes)
Identified by the specific variable in the
application

= Operations on dynamic data types, identified by
the specific data type Iin question

= Control-flow paths that lead to the locations
where these operations are being done

< Thread identifiers within which the
aforementioned operations occur

IMEC '

Step2: Analysis and ldentification of Date

Algorlthm 1 Data transfers identification

o Wy S Sy SR S Sy
HDN RN RN

28: end for
: end function

function TRANSFERIDENTIFICATION
alive Blocks : List of Blocks
recordO f'I'rans fers : List of Transfers
for all event € logF'ile do
if event is allocation then
alive Blocks.Insert(new Block(address, size, datal ypel D))
else if event is deallocation then
block «— alive Blocks.FindBlock(address)
if IsValid(block.activeTrans fer) then
recordO fTrans fers.Insert(block.activel'rans fer)
end if
alive Blocks.DeleteBlock(address)
delete block
else if event is memory access then
block «— alive Blocks.FindBlock(address)
transfer «— block.activel ransfer
if IsValid(block) and IsValid(trans fer) then
if IsConsecutive(transfer, address, threadl D, direction)
then
trans fer.Update(address)
else
recordO fl'rans fers.Insert(trans fer)
block.activel rans fer «+—new Transfer
(address, datalypel D, threadl D, direction)
end if
else
block.activel rans fer «—new Transfer
(address, dataTypel D, threadl D, direction)
end if
end if

Step2: Analysis and Identification of Data

Transfers

Algorithm 1 Data transfers identification

® We re ad ALL the d ata 1: functiQn TRANSFERI[?ENTIFICATION
2: alive Blocks : List of Blocks

tran Sfe s Captu red | N the 3: recordO fTransfers : List of Transfers
. » 4: for all event € logF'ile do
log file 5
6 alive Blocks.Insert(new Block(address, size, datal'ypel D))

if event is allocation then
S We Captu re ALL al Iocat|0n 7 else if event is deallocation tht_an
8: block «— alive Blocks.FindBlock(address)

deallocation events 13 if ISValid(block:.activeT’ransfez’) then |
: recordQ fT'ransfers.Insert{block.activel'rans fer
- We pack together 11 end if
. 12: aliveBlocks.DeleteBlock(address)
consecutive memory 13: delete block
14: else if event is memory access then
accesses (to the same 15: block — aliveBlocks.FindBlock(address)
16: transfer < block.activel' ransfer
da‘ta _ from the same 17: if IsValid(block) and IsValid(trans fer) then
th read) as a block transfe r 18: ifﬁsgonsecutive(tTcmeeT, address, threadl D, direction)
> We go from ég | trans fer.Update(address)
: else
|ndependent’ interleaved 21: TecordOfTTansfers.Insert(transtT)
) 22: block.activeT rans fer «new Transfer
accesses, to ConSOI |dat6d (address, dataTypel D, threadl D, direction)
23: end if
block transfers. 24: else
25: block.activel rans fer «—new Transfer
(address, datalTypel D, threadl D, direction)
26: end if
27: end if

. 28: end for
l m e C 29: end function

Software Metadata Structure

/' GLOBAL METADATA \

® # Scalar R/'W |
e # Block R/W

¢ Maximum transfer length RAW
e Max active dynamic blocks

e Transfer size
® # Instances

c
R
e—
m©
E /" DATATYPEIDS |\
:E o #Total RW MEMORY ACCESSES \\
© e # Block R/W _ e Time stamp (ordering key)
o o # Instances dynamically e Data type ID
=) allocated e Thread ID
% e Per transfer size: e Starting address
= = # transfer ® Length
instances ® Direction (R/W)
- % over k Scalar / Block transfer

\ application total

Cimee

Step3: Evaluation of SW Metadata

Packet size distribution among different inputs
B 0%0-10%0 B 10%06-20% 20%0-30%0

B 30%0-40%0 1 40%0-50%0
B 50%0-60%0 1 60%0-70%0 H70%0-80%0

80%0-90%0 H90%0-100%0

100%6
90%
80%

c
O 70%
g 60% |
050%
= 40%

0
5 30%
0 20%
N 1096
0%

64 128

256

o1z 768 1024 1 Different network
Packet sizes MTU inputs

Cimee

Software Testbench

Arrivals Encryption
Queue Queue
h—-—-—""
Dynamic Input User Session TCP/IP Packet Encryption
(wireless Simulator Formation Subsystem
network traces)
Network Queue to
Buffers Send
TCP
Checksum
QoS Manager & Queue
Deficit Round el e el
Robin y
Priority
Queues

e 5 threads

< Communication through synchronization queues
- Real network traces

Simulator Architecture

= Use of a memory hierarchy
simulator to evaluate our

approach
External ® I -
P — Simulates:
Arbiter — Concurrent behavior of processor
and DMA

— Based on trace of memory
accesses generated using the
original profiling information

ng » Results:
Block Age Individual — Number of row activations in DRAM
ransfers f rransfers
(Transfers banks
oo {

— Total energy consumption of
memory subsystem

— Mean latency of memory hierarchy

Cimee

Usage of Software Metadata

Algorithm 2 Optimized data transfer function according to
software Metadata.

I: function TRANSFERCOPY(source, destination, dataTypel D, size)
% if GlobalScenario = ,S'c.ena'r"ioA then > Perform a software copy Only for the dynamic
: memcpy (source, destination, size) i)
4: else if (GlobalScenario = ScenarioB) and data that is pI’OfItab|e
(dataTypel D = X) then > Do locked DMA transfer. - use the DMA to
5: DMATranst(source, destination, size, W AI'T)
6: else if ... then perform a data
7: transfer
8: end if
9: end function]
10: function PROCESSDATA(input, output, size) - The DMA is
11: TransferCopy(input, SCRATCHPAD, dataType, size) regu|ated by the
12: DoComplexProcessing(SCRATCHPAD, size)
13: TransferCopy(SC RATCHPAD, output, dataType, size) Software Metadata
14: end function extracted by our tools

In the client function, the invocation of TransferCopy leads to

implementation of the transfer policy, according to the identified
case + the SW metadata of the original application allowed us to
identify the relevant block transfers from the original source code.

Cimee

Experimental Results

TABLE I
GLOBAL STATISTICS FOR IDENTIFIED BLOCK TRANSFERS.

Input # Read # Write | Max Transter | Mean Transfer Most active

transfers | transfers length length | data type ID
01 396,347 79,016 1.500 203 2
02 40.663 37,568 1.500 109 2
03 250,283 213,094 1.500 107 14
04 294,408 313,144 1.500 181 2
05 299,346 285,951 1.300 108 14
06 254012 253,248 576 34 2
07 2,641.875 371,245 1.500 87 2

Highest abstraction layer
Create statistics and identify block transfers for each input

Cimee

Experimental Results ;s

Percentage distribution of data transfer lengths

Others, 12%
1460 bytes, 1%
576 bytes, 4%

536 bytes, 8%

8 bytes, 9%

@ytes, 66%

@8 bytes W40 bytes (01536 bytes (1576 bytes B 1460 bytes @ Others

Second level of abstraction
Extract the frequency of data transfers, according to their size

Experimental Results 3/,

TABLE II
DISTRIBUTION OF TRANSFER SIZES FOR EACH DYNAMIC DATA TYPE ID,
AVERAGED FOR ALL INPUTS.

Percentage | Transfer size | # Transfers ID
over total
S55% 40 382,740 01
: 18% 40 126,078 14
7% 8 48,534 02
6% 536 63,210 02
5% 576 31,605 14
2% 8 16,940 01
) % 1460 6.182 02
1% 468 3,538 02
2% Others 17,501 Others

Details for the concrete dynamic data type IDs associated with each
transfer length

Cimee

Experimental Results 4,

REDUCTION OF THE TOTAL NUMBER OF EXECUTED CYCLES WITH
DMA-BASED OPTIMIZATIONS EXPLOITING OUR EXTRACTED METADATA.

TABLE III

Input | # Cycles proc | # Cycles DMA # Cycles # Cycles

(with DMA) (with DMA) | (without DMA)
01 688.552 2.564.269 3,252,821 4,634,128
02 369.934 628.622 998,556 1,085,164
03 1,665,311 3,177,720 4,843,031 5,607,312
04 2.875.726 8.446.861 11,322,587 15,145,873
05 2,300,094 4.282.901 6,582,995 7,527,066
06 1.420.904 9,025,292 10,446,196 16,222,819
07 3.023.595 5.404.975 8,428,570 9,775,976
Avg. 1,763,445 4,790,091 6,553,536 8,571,191

\

}

|

System cycles from the
memory point of view

imee

Experimental Results /s,

Reduced number of cycles

|l I|E

Input traces

=]
R

5
3

S
=

o
e

=
s

Percentage of improvement

n
=

=
ES

Reduction in memory subsystem cycles from 8% up to 35.6% and on
average 23.56% for all the traces

Cimee

Conclusions and Future Work

= We have presented a framework that extracts
SW metadata...

- ..enabling memory data transfer optimizations
- Successful identification of block transfers

— Evaluation using real network traces

— 23.5% reduction of memory cycles

e Future work:
— Extensions towards data transfer scheduling

— Enhanced block transfer identification

— Improved high-level simulator

imee

Thank You!
Questions?

aspire invent achieve

	Slide Number 1
	Enabling Run-Time Memory Data Transfer Optimizations at the System Level with Automated Extraction of Embedded Software Metadata Information
	Introduction – Motivation
	Available DMA Options
	Presentation Overview
	What is Software Metadata?
	Methodology Overview
	Step1: Raw Information Extraction
	What information do we capture?
	Step2: Analysis and Identification of Data Transfers
	Step2: Analysis and Identification of Data Transfers
	Software Metadata Structure
	Step3: Evaluation of SW Metadata
	Software Testbench
	Simulator Architecture
	Usage of Software Metadata
	Experimental Results (1/5)
	Experimental Results (2/5)
	Experimental Results (3/5)
	Experimental Results (4/5)
	Experimental Results (5/5)
	Conclusions and Future Work
	Thank You!�Questions?
	Slide Number 24

