
Mamagkakis Stylianos
© imec/restricted 2007 1

ASP-DAC 2008

Enabling Run-Time Memory Data Transfer
Optimizations at the System Level with

Automated Extraction of Embedded
Software Metadata Information

A. Bartzas1, M. Peón Quirós2, S. Mamagkakis3,
F. Catthoor3,4, D. Soudris1, J. M. Mendías2

1 VLSI Design & Testing Center, Democritus Univ. Thrace, Greece
2 DACYA, Univ. Complutense de Madrid, Spain

3 IMEC vzw., Belgium
4 Also Prof. at Katholieke Univ. Leuven, Belgium

PENED 03ED593 (Greece)

TIN 2005-5619 (Spain)

HPMT-CT-2000-00031 (E.U.)

Supported by:

Introduction – Motivation

• Analyze concurrent accesses to DRAMs
– Multi-threaded embedded network system

– Use of real wireless input traces

• Allow early stage identification of block
transfers of Dynamic Data Types
(e.g., linked lists) from source code

• Derive optimization for DMA usage and
design from Software and Hardware
Metadata

Available DMA Options

• Typical use:
– Programmer writes loops to process data from arrays

– Programmer identifies potential block transfers

• To move data in the memory hierarchy
• To transfer data between buffers (processing or I/O).

– Block transfer primitives are applied manually (memcpy or
DMA calls)

• We propose:
– Tool-flow to automatically identify potential block transfers

of Dynamic Data Types in early design stages

– Tuning Software Metadata: adjust minimum block transfer
size that is done with the DMA

– Parameterizing Hardware Metadata: maximum number
of cycles that the DMA can keep the bus without being
interrupted by the processor

Presentation Overview

• Introduction – Motivation

• Software Metadata

• Methodology Overview

• Experimental Results

• Conclusions – Future Work

What is Software Metadata?

• We define as Software Metadata the
representation of the characteristics of
dynamic applications is respect of:
– Requested memory footprint

– Data access behaviour

• … whereas Hardware Metadata describe
the characteristics of the platform
– Allowing easily design, test and verify hardware

platforms [SPIRIT Consortium – IP-XACT]

Methodology Overview

Step1: Raw Information Extraction

• Profile the dynamic applications
– Using as many realistic inputs as possible/within

time limits, etc.

• How do we do it? using Profiling
Templates
– Manual, typed-based approach

– Each variable type (for the variable we are
interested in) is annotated

– The propagation of the type-change is performed
by the compiler

– Windows + Linux

– 2-3x slower execution time

What information do we capture?

• Allocation and de-allocation of the dynamic
memory, identified by the specific variable in
the application

• Dynamic memory accesses (reads and writes)
identified by the specific variable in the
application

• Operations on dynamic data types, identified by
the specific data type in question

• Control-flow paths that lead to the locations
where these operations are being done

• Thread identifiers within which the
aforementioned operations occur

Step2: Analysis and Identification of Data
Transfers

Step2: Analysis and Identification of Data
Transfers

• We read ALL the data
transfers captured in the
log file

• We capture ALL allocation
deallocation events

• We pack together
consecutive memory
accesses (to the same
data – from the same
thread) as a block transfer
We go from
independent, interleaved
accesses, to consolidated
block transfers.

Software Metadata Structure

Step3: Evaluation of SW Metadata

1

2

3

4

5
6

7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 768 1024 MTUPacket sizes

S
iz

e
 d

is
tr

ib
u

ti
o

n

Different network
inputs

Packet size distribution among different inputs
0%-10% 10%-20% 20%-30% 30%-40% 40%-50%

50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Software Testbench

• 5 threads
• Communication through synchronization queues
• Real network traces

Simulator Architecture
• Use of a memory hierarchy

simulator to evaluate our
approach

• Simulates:
– Concurrent behavior of processor

and DMA

– Based on trace of memory
accesses generated using the
original profiling information

• Results:
– Number of row activations in DRAM

banks

– Total energy consumption of
memory subsystem

– Mean latency of memory hierarchy

Usage of Software Metadata

Only for the dynamic
data that is profitable
use the DMA to
perform a data
transfer

- The DMA is
regulated by the
Software Metadata
extracted by our tools

In the client function, the invocation of TransferCopy leads to
implementation of the transfer policy, according to the identified
case + the SW metadata of the original application allowed us to
identify the relevant block transfers from the original source code.

Experimental Results (1/5)

Highest abstraction layer
Create statistics and identify block transfers for each input

Experimental Results (2/5)

Second level of abstraction
Extract the frequency of data transfers, according to their size

Experimental Results (3/5)

Details for the concrete dynamic data type IDs associated with each
transfer length

Experimental Results (4/5)

System cycles from the
memory point of view

Experimental Results (5/5)

Reduction in memory subsystem cycles from 8% up to 35.6% and on
average 23.56% for all the traces

Conclusions and Future Work

• We have presented a framework that extracts
SW metadata…

• …enabling memory data transfer optimizations
• Successful identification of block transfers

– Evaluation using real network traces

– 23.5% reduction of memory cycles

• Future work:
– Extensions towards data transfer scheduling

– Enhanced block transfer identification

– Improved high-level simulator

Thank You!
Questions?

Contact: Alexandros Bartzas
ampartza@ee.duth.gr

Mamagkakis Stylianos
© imec/restricted 2007 24

	Slide Number 1
	Enabling Run-Time Memory Data Transfer Optimizations at the System Level with Automated Extraction of Embedded Software Metadata Information
	Introduction – Motivation
	Available DMA Options
	Presentation Overview
	What is Software Metadata?
	Methodology Overview
	Step1: Raw Information Extraction
	What information do we capture?
	Step2: Analysis and Identification of Data Transfers
	Step2: Analysis and Identification of Data Transfers
	Software Metadata Structure
	Step3: Evaluation of SW Metadata
	Software Testbench
	Simulator Architecture
	Usage of Software Metadata
	Experimental Results (1/5)
	Experimental Results (2/5)
	Experimental Results (3/5)
	Experimental Results (4/5)
	Experimental Results (5/5)
	Conclusions and Future Work
	Thank You!�Questions?
	Slide Number 24

