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Transfer function
LTT (linear, time-invariant systems)

input signal X(t) and output Yy(t)

Y(s) =H(s)X(s)
H(s)—ﬁ

~ X(s)

where H(s) Is the transfer function of the LTI system



Pole-residue representation

e Pole-zero

b, +bs+...+b s"

H(s) = -
l+as+..+as

H (S) — K (S_ Zl) [(S_ ZZ)"'(S_ Zm)
(s- pl) (s~ pz)---(s_ pn)

e Pole-residue

H(s) = Y —%

i=1 S~ P,




Matrix Pencil

e Used for extracting poles and residues.
e Specifically, works for EM transient signal.

M
Y = 2.t exp(pAtk)
=1

» k=0,1,...,N-1,
> 1. are the complex residues,

> p, are the complex poles,

» At is the sampling interval.



General Pencil of Function Method
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ALGORITHM: GPOF

Input: sampling vectors ¥; = [¥i, Yit1y---s -y;;+N—L—1]T
Output: poles vector p and residues vector r

Clonstruct matrices Y7 and Yao.
Y1 =[yo,¥1,--,¥L-1] Yo =[y1,¥2,...,¥L]
Singular value decomposition (SVD) of Y. Y, = UDVH
Construct matrix Z. Z = D7UH Y,V
Eigen-decomposition of Z. Zg = eig(Z)

log(=;)

find poles vector: p; = —=3

Solve B1 and Bs from Y1 = Z1RZs and Yo = Z1 RZn 2.

r 1 1 1
z1 zo ZM -‘
£1 = . . I
N—L-1 _N-L-1 _,\,—L—lj
i | ~ =M
1 z1 z
Lo = )
L—1
1 z2m Zpr
R1+R2

find residues vector: r =

."l



How to choose M and L

e M is model order number.
e L Is sampling window size.
e N Is the number of total sampled points.

e For GPOF, M £ L < N-M. Allow different
window sizes and pole numbers.

e Typically, choosing L = N/2 can yield better
results.



Sampling issue

e Traditional MP using constant interval time
for sampling.

e Temperature increase dramatically fast in the first
few seconds.

e Log-scale sampling is a good way.

e Numerical differentiation for computing
Impulse response.

e Need to compute the impulse response instead of
step responses, which are given.



Linear vs Log-scale
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Log-scale sampling

e Temperature increases very fast in a first few
seconds.

e Temperature needs a very long time to get
steady.

e Offset to make sure It starts at t=0.
e Get the response back

y' (1) = y(In(t) — In(to))

y'(t): response in normal time scale;
y(t): response in log-scale;
t,: offset, usually a very small value.



Numerical Differential and
Stabilization (1)

e Stable pole extraction
e Only negative poles
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Numerical Differential and
Stabilization (2)

e Stabilizing the starting response
e Increasing sampling points

Impulse and
step responses
for L =100

Impulse and
step responses
for L = 200




Thermal modeling flow

Numerical
differentiating to obtain
the impulse response
from step response

Log-scale sampling
and offsetting to
zero-start time

Zero-response ending
time extension to
stabilize model

Transfer function

Poles and residues
extraction by GPOF

Variable L to improve
the accuracy of model




Recursive computation

e Computation complexity is only O(n)

e N is the number of time segments or the
number of power traces

Tn—l

dt

dt

dt

v, (O)=y (t+dt)- v, (1) a)

V(1) =y, (t+dr) b)

V(1) =y, (t +dt)+ y, (1) c)



Reduction of thermal models

e State-space realization

o Y 7 .
V(s)=——+—= p=a+bj ,—cqdj

sS—1p s— P

L a b 9
Ai=|_, a.] b, = H c; =[c d

e MOR by PRIMA
A, =V'AV b, =V'b c =c'V

e Reduced transfer function

q .

Y(s) = E Hi * Uk A is the kth diagonal element of A, p,
— 5 Al is the kth element of ¢, TP, v, is the kth

o element of P-1b, and q is the reduced

A =PAP™? order



Training

e EXxtracting 5 groups of poles and residues
using matrix pencil method.

e Obtaining the transfer function of the system.

e Simulating the output of the system (thermal
simulation).

e Linear combination

e Benchmark provided by Intel, random power
iInput.



Simulation result (1)
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Simulation result (2)
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Simulation result (3)

e Features of the errors between measured and
computed temperatures (M = 50)

Error (°C) Error percentage
Maximum | Mean | Std. deviation | Maximum | On average
Core0) 1.05 0.34 0.23 1.56% 0.50%
Corel 1.67 0.53 0.48 2.44% 0.78%%
Core2 1.78 0.61 0.47 2.56% 0.93%
Core3 3.33 1.10 0.82 6.09% 1.80%
Cache 1.05 0.63 0.22 1.84% 1.22%

e Errors of the maximal and minimum peaks (M = 50)

Maximal peak

Minimum peak

NMeasured (°C') | Error (°C') | Percentage

Measured (°C') | Error (°C') [ Percentage

Core( 7727 0.45 0.58% A7 .47 0.38 0.7007
Corel 78.86 0.04 0.05% 47 81 0.35 0.73%
Core2 78.55 0.38 0.487 47.77 0.24 0.51%
Core3 76.48 0.75 0.98% A7.38 0.45 0.95%
Cache 57.80 0.99 1.72% 48.86 0.11 0.23%




Simulation result (4)

e Reduction of thermal models (M = 30)

Errors of the maximal and minimum peaks and means (M = 30)

Maximal peak Minimum peak Mean
Error (°C') | Percentage | Error (C’) | Percentage | Error (°C') [ Percentage
Core0 0.40 0.52% 0.46 0.96% 0.36 0.1307
Corel 0.12 0.15% 0.49 1.00% 0.47 0.69%
Core?2 0.06 0.07% 0.34 0.70% 0.56 0.83%
Core3 0.76 0.98% 0.53 1.11% 1.11 1.66%
Cache 1.01 1.78% 0.01 0.02% 0.03 1.250,

Speedup when M =30 compared to M =50

Run time (s) | Run time (s) Time

when M = 50 | when M = 30 | reduced
Core0 1.31 0.80 38.9%
Corel 1.29 0.78 39.5%
Core2 1.28 0.78 39.1%
Core3 1.28 0.78 39.1%
Cache 1.30 0.79 39.2%




Conclusion

e Efficient on-chip thermal analysis technique is
required for on-chip dynamic thermal
management study and run-timing DTM.

e Developed a new estimation method to
compute real microprocessor Function Units’
power.

e Developed behavioral thermal modeling
techniques based on matrix pencil.

e Developed thermal reduction techniques.



