A Stochastic Local Hot Spot Alerting Technique

Hwisung Jung, and Massoud Pedram

University of Southern California Dept. of Electrical Engineering

Asia and South Pacific - Design Automation Conference 2008

- Motivation and Background
- Uncertainty-Aware Estimation Frameworks
- The Proposed Hot Spot Alerting Algorithm
- Experimental Results
- Conclusion

Introduction

As IC process geometries shrink below 65nm

- Higher power density
- □ Higher operating temperature
- Lower circuit reliability
- Thermal control becomes a first-order concern
 - \square Gate oxide lifetime is highly dependent on the T $_{\rm J}$ of IC
 - □ Elevated temperature is a major contributor to lower IC reliability

Local hot spots becomes more prevalent in VLSI

- Non-uniform power density
- Degraded supply voltage levels
- Identifying and removing local hot spots is a major task

Prior Works

K. Skadron, et al. (ISCA 2003)

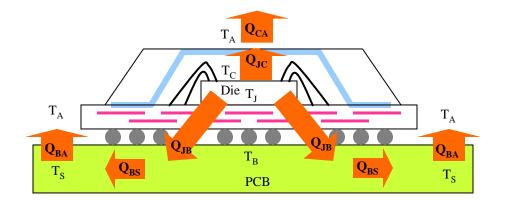
□ Architectural-level thermal model, *HotSpot*

W. Huang, et al. (DAC 2004)

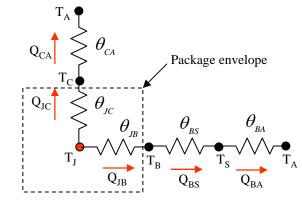
Compact thermal model for temp-aware design

- D. Brook, et al. (HPCA 2001)
 Thermal control mechanism, Wattch
- J. Srinvasan, et al. (ICS 2003)
 Predictive dynamic thermal management
- R. Mukherjee, et al. (DAC 2006)
 Thermal sensor allocation and placement

Problem Statements


Much past work has examined techniques for:

- Thermal modeling
- Thermal management
- Thermal modeling, based on equivalent circuit models
 - Cannot consider real structures that have complex shapes and boundary conditions
- Thermal management, depends on thermal sensors
 - Can hardly observe peak power dissipation and resulting peak temp. (due to non-uniform power density)
- Gives rise to uncertainty in profiling local hot spots
 Renders the problem of identifying hot spots a stochastic one


Background (1/3)

IC package can be characterized by thermal resistance

- □ Heat is dissipated from the die into the ambient air
- Value of the thermal resistance determines the temperature rise of the junction above a reference point

Heat flow in the PBGA + HS package

One of the IC package heat transfer paths and the corresponding thermal resistive model

Background (2/3)

Thermal resistance is defined as

$$\theta_{JX} = (T_J - T_X) / P$$

- \Box θ_{JX} is the thermal resistance from device junction to specific point
- \Box T_J is the device junction temperature
- \Box T_x is the reference temperature for specific point
- \square *P* is the device power dissipation
- When reference temperatures are specified for T_A , T_B , or T_C

$$\theta_{JA} = \frac{(T_J - T_A)}{P}$$
 $\theta_{JB} = \frac{(T_J - T_B)}{P}$ $\theta_{JC} = \frac{(T_J - T_C)}{P}$

Junction-to-air

Junction-to-board

Junction-to-case

 \Box T_A , T_B and T_C are temperatures of ambient air, PCB board, and the case top

Background (3/3)

Junction-to-air thermal resistance can be calculated as

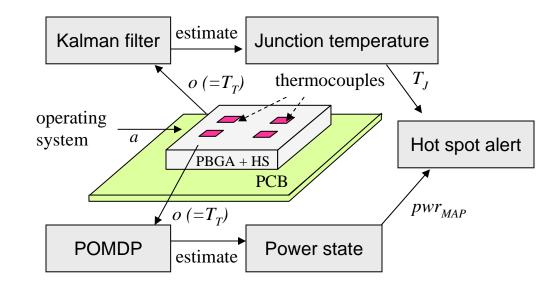
$$\theta_{JA} = \left(\frac{1}{\theta_{JB} + \theta_{BS} + \theta_{BA}} + \frac{1}{\theta_{JC} + \theta_{CA}}\right)^{-1}$$

 \Box The junction temperature can be estimated with: $T_J = T_A + P \cdot \theta_{JA}$

□ The goal of thermal design is to maintain the θ_{JA} value small so that the junction temperature T_J does not exceed some specified maximum value

• θ_{JA} cannot be modeled directly due to the complexity of thermal models for package, cooling system, and board stack

 \Box θ_{JA} is assumed to be a single parameter under the assumption that *P* is distributed uniformly across the die: *not realistic*


Motivation

- Develop a hot spot alerting technique by estimating the junction temperature and the system power state
 - □ The thermal time constant of the die is larger than the circuit clock speed
 - Recognizing a temperature rise by relying on thermal sensors and subsequently employing thermal control mechanisms can result in too late a response
- Our proposed hot spot alerting technique combines:
 - □ State estimation for the junction temperature using Kalman Filter (KF)
 - State estimation for the system power dissipation using Partially Observable Markov Decision Process, (POMDP)

Overview of Estimation Framework

• Use (external temperature) observations to estimate the Junction Temperature (T_J) and the Power state (pwr_{MAP})

Uncertainty-aware estimation framework

Temperature Estimation Framework

Kalman Filter

Estimate the state of a system based on the previous state, previous action, and the current observation

- Kalman Filter-based Temperature Estimation (KFTE)
 Framework
 - \Box s is a state representing the junction temperature T_J
 - □ *a* is a voltage-frequency assignment action given by an operating system
 - \Box o is a temperature observation T_T
 - **X** denotes a state transition matrix
 - □ Y denotes an action-input matrix
 - **Z** denotes an observation matrix

 $s^{t+1} = \mathbf{X}s^t + \mathbf{Y}a^t + u^t$, $u^t \sim N(0, Q^t)$ *u*: temperature variation

 $o^{t+1} = \mathbf{Z}s^{t+1} + v^{t+1}, \quad v^{t+1} \sim N(0, R^{t})$ v: observation noise

Power Profile Estimation Framework (1/2)

PODMP (Partially Observable Markov Decision Process)

To model the uncertainty in parameter observations

■ POMDP is a tuple <*S*, *A*, *O*, *T*, *Z*> such that

- □ S is a finite set of states
- \Box A is a finite set of actions
- O is a finite set of observations
- □ *T* is a state transition probability function
- Z is an observation function

POMDP maintains a belief state, b^t(s)

□ A probability distribution over the possible states of the system

$$\Box \sum_{s \in S} b^t(s) = 1$$

Power Profile Estimation Framework (2/2)

POMDP-based Power Profile Estimation (P3E) Framework

- □ *b* is a belief state about power state of the system
- □ *a* is an action input
- \Box o is an temperature observation
- \Box T is a state transition function
- \Box Z is an observation function

Estimation of power state is performed by obtaining the maximum a posterior (MAP) value Based on the Bayesian approach

Hot Spot Alerting Algorithm (1/4)

Estimation of junction temperature of the chip

Assume that a thermal sensor receives streams of sensor data

Initialize

• Initialize noise & error variation: $Q^t = Q^0 R^t = R^0 E^t = R^0$ Initialize the first state: $s^t = s^0$ ٠ $t \leftarrow t + 1$ Predict $s^{t+1} = \mathbf{X}s^t + \mathbf{Y}a^t$ • Predict the next state: • Predict the error variance: $E^{t+1} = \mathbf{X}E^{t}\mathbf{X}^{\mathrm{T}} + Q^{t+1}$ Update • Kalman gain: $\mathbf{K}^{t+1} = E_{-}^{t+1} \mathbf{Z}^{\mathrm{T}} (\mathbf{Z} E_{-}^{t+1} \mathbf{Z}^{\mathrm{T}} + R^{t+1})^{-1}$ • Update the state prediction with observation: $s^{t+1} = s^{t+1} + \mathbf{K}^{t+1}(o^{t+1} - \mathbf{Z}s^{t+1})$ • Update the error variance: $E^{t+1} = (\mathbf{I} - \mathbf{K}^{t+1}\mathbf{Z})E_{-}^{t+1}$

Junction temperature estimation

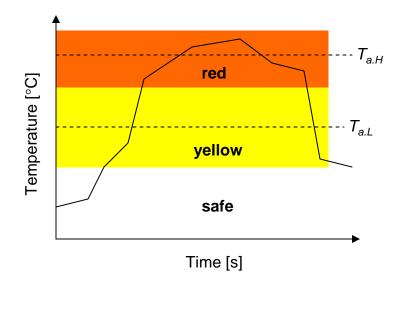
Hot Spot Alerting Algorithm (2/4)

Estimation of power state of the system

Based on the Bayesian approach

$$Prob(b^{t} \mid h^{t}) = \frac{Prob(h^{t} \mid b^{t}) \cdot Prob(b^{t})}{Prob(h^{t})}$$

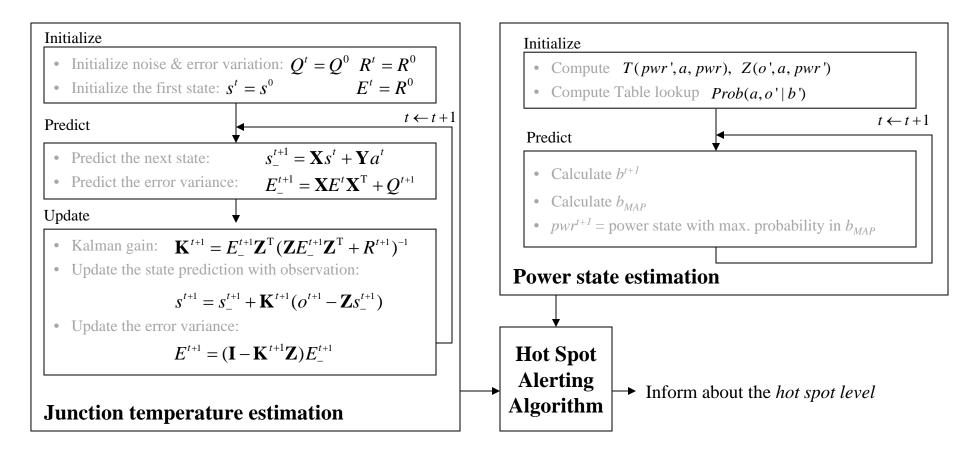
- \Box *h* is a stream of action-observation pairs
- \square *Prob(b^t | h)* is the posterior probability density function
- \square *Prob*(*h*^t | *b*^t) is the likelihood function
- \square *Prob*(*h*^t) is the prior distribution
- □ *Prob*(*b*^{*t*}) is the probability of belief state


The most probable power state can be computed as MAP

$$b_{MAP} = \underset{b \in B}{\operatorname{arg max}} \operatorname{Prob}(b^{t} \mid h^{t}) = \underset{b \in B}{\operatorname{arg max}} \operatorname{Prob}(h^{t} \mid b^{t}) \cdot \operatorname{Prob}(b^{t})$$
$$= \underset{b \in B}{\operatorname{arg max}} \operatorname{Prob}(a^{t-1}, o^{t} \mid b^{t}) \cdot \operatorname{Prob}(b^{t})$$

Hot Spot Alerting Algorithm (3/4)

The proposed hot spot alerting algorithm


- □ Define *red* and *yellow* hot spot levels in terms of degree of thermal threat
- □ $T_{a.H}$ and $T_{a.L}$ are pre-defined temperature thresholds ($T_{a.L} < T_{a.H}$)
- \Box P_a is a power dissipation threshold
- \Box $G_{i.a}$ is a temp. gradient threshold

<i>1</i> : do 1	forever					
2:	predict the junction temperature, T_i^{t+1}					
3:	predict the power state of the processor, pwr^{t+1}					
4:	$\text{if } T_j^{t+l} \ge T_{a.H}$					
5:	alert red hot spot					
<i>6</i> :	else if $T_{a,L} \leq T_i^{t+l} < T_{a,H}$					
7:	if $pwr^{t+1} \ge P_a$					
8:	alert <i>red</i> hot spot					
<i>9</i> :	else					
10:	alert <i>yellow</i> hot spot					
<i>11</i> :	else					
12:	if $\partial T_{j} / \partial t \geq G_{j,a}$					
<i>13</i> :	alert yellow hot spot					
14: return hot spot level						

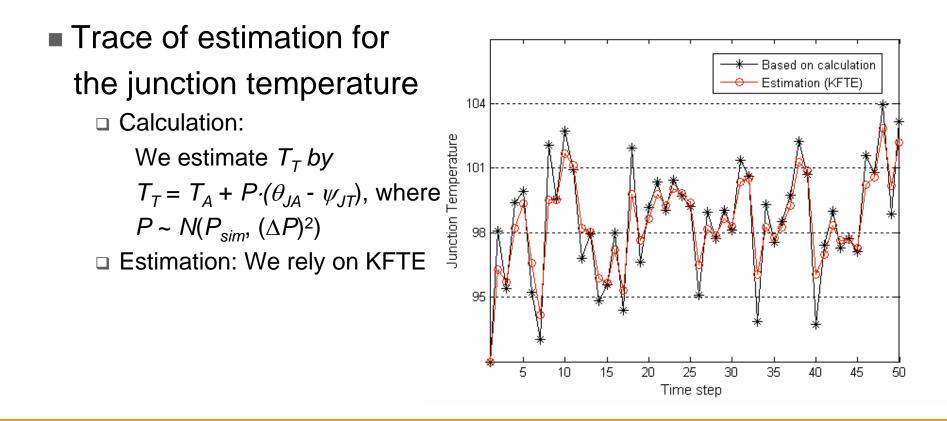
Hot Spot Alerting Algorithm (4/4)

The flow of the proposed estimation technique

Experimental Setup

- The technique is applied to a 32bit RISC processor
- Set the parameter values for estimation framework

		power [W] s	tate	observation [°C] state		
	pow ₁	pow ₂	pow ₃	0 ₁	<i>0</i> ₂	03
range	[0.6 1.4]	(1.4 2.2]	(2.2 3.0]	[86 93]	(93 100]	(100 107]

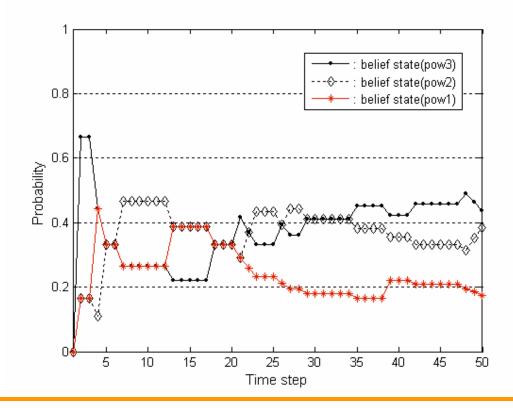

■ PBGA package thermal performance data (T_A =70°C)

Air velocity					
m/s	ft/min	$T_{J_{max}}[^{\circ}\mathrm{C}]$	$T_{T_{max}}[^{\circ}\mathrm{C}]$	Ψ_{JT} [°C/W]	θ_{JA} [°C/W]
0.51	100	107.9	106.7	0.51	16.12
1.02	200	105.3	104.1	0.53	15.62
2.03	300	102.7	101.2	0.65	14.21

[ψ_{JT} : Junction-to-top of package thermal characterization parameter]

Experimental Results (1/3)

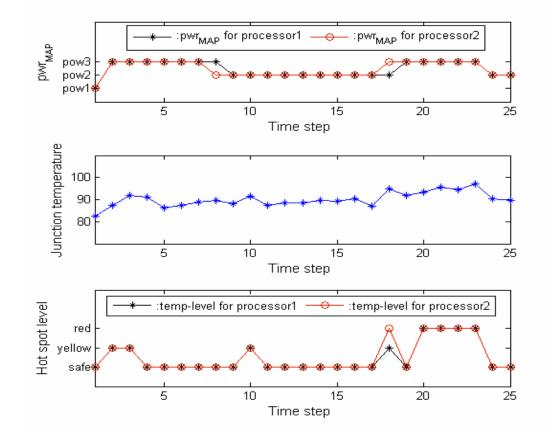
Arbitrarily choose a sequence of 50 application programs
 E.g., gap₁ - gzip₂ - gap₃ - gcc₄ -...- gap₅₀.


Experimental Results (2/3)

Trace of belief state for the power state

- e.g., belief state(pow₁): probability over power state pow₁
- Evaluated by POMDP-based

Power Profile Estimation


(P3E) method

Experimental Results (3/3)

Evaluation of the proposed hot spot alerting algorithm

□ Hot spot levels defined: *red*, *yellow*, and *safe*

Conclusion

- The stochastic hot spot alerting technique based on
 - □ Estimation of the junction temperature of the device
 - Estimation of the power state of the system
- The proposed uncertainty-aware estimation framework efficiently captures
 - stochastic behavior of the system
 - □ PVT variations in system performance parameters, and
 - □ inaccuracies in temperature measurements
- The ability to handle uncertainty improves the accuracy and robustness of the estimation technique
- Experimental results show that the proposed technique alerts thermal threats under large variations