Pessimism Reduction in Static Timing Analysis using Timing and Logic Filtering

Debasish Das, Kip Killpack*, Chandra Kashyap*, Abhijit Jas** and Hai Zhou

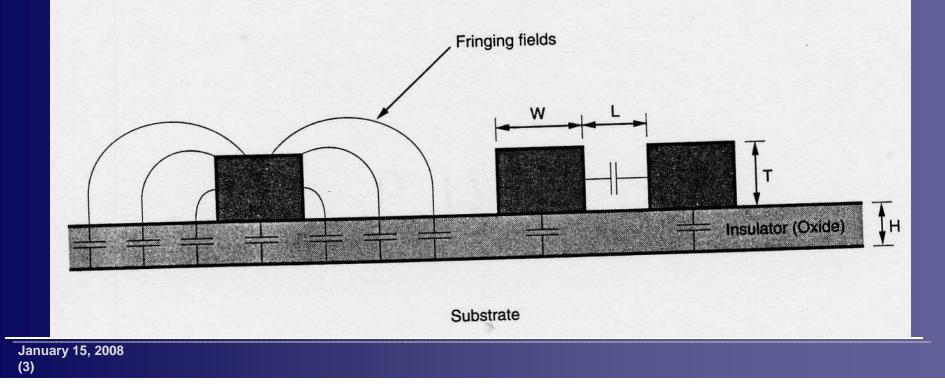
EECS, Northwestern University *Strategic CAD Lab, Intel Corporation **Validation and Test Solutions, Intel Corporation

ASP-DAC 2008 Presentation Jan 23rd 2008

Industry Support

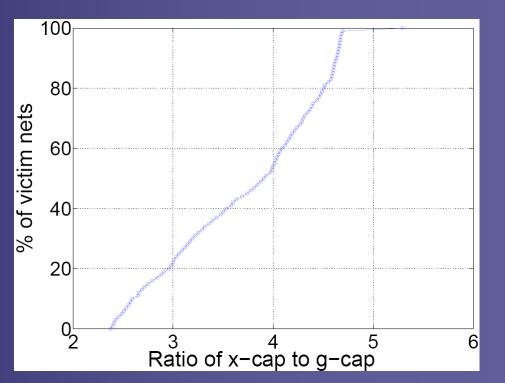
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

McCormick Robert R. McCormick School of Engineering and Applied Science Northwestern University


Outline

- Coupling aware timing analysis
- Charge sharing based accurate coupling model
- Logic Filtering overview
- Filtering algorithm
- Experimental results
- Conclusions

Origin of coupling : Increase in aspect ratio


- Pitch = W + L
- Aspect ratio: AR = T/W
 - Old processes had AR << 1 T << W</p>
 - Modern processes have $AR \approx 2$ $T \approx 2W$
 - Pack in many skinny wires

Coupling dominates

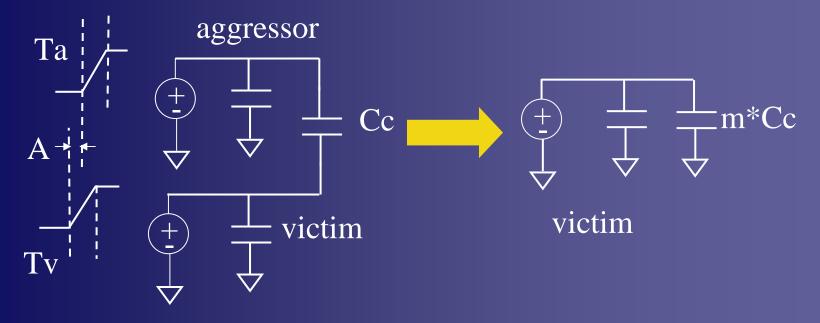
- Coupling cap dominates interconnect parasitics
- Graph shows ratio of coupling cap vs. ground cap of nets
 - Parasitics extracted from 65 nm logic block
 - Industrial Microprocessor design from Intel

Coupling aware Timing Analysis

- Timing Analysis with x-cap iterative
- Iterative analysis with continous models: Chen et.al ICCAD 2000
- Iterative analysis with discrete models: Sapatnekar et.al ICCAD 2000, Chen et.al ICCAD 2000, Arunachalam et.al DAC 2000, Das et. al ICCD 2006
- Iterative coupling aware analysis without logic constraints is pessimistic

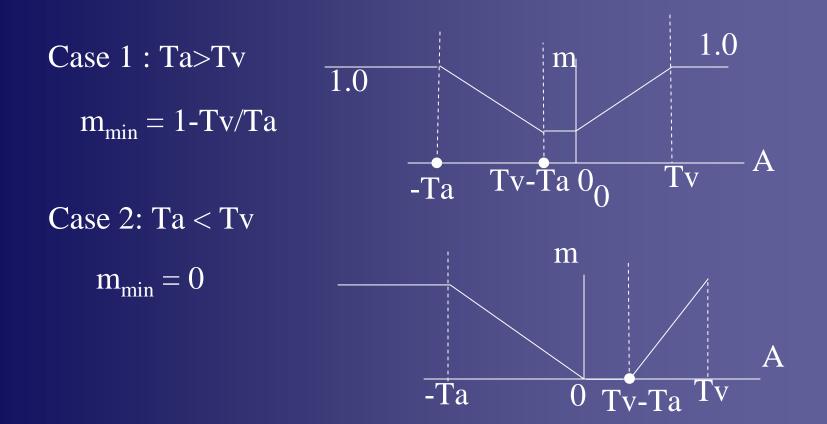
Pessimism reduction using Logic Filtering

- Generating Logic Conditions on a set of nets
 - False path identification (numerous papers)
 - Finding false aggressors using logic implications (Glebov et. al.)
 - Finding false aggressors using propositional satisfiability(Sakallah et. al.)
 - Generating SAT formulas based on timing window convergence
 - False Coupling Exploration in Timing Analysis (Tseng et. al.)
 - Temporofunctional crosstalk noise analysis (Chai et. al.)
- Previous research gives potential optimistic results
 - No iteration on logic assumptions
 - Ignoring logic and timing interaction
 - Overly-simplistic coupling model

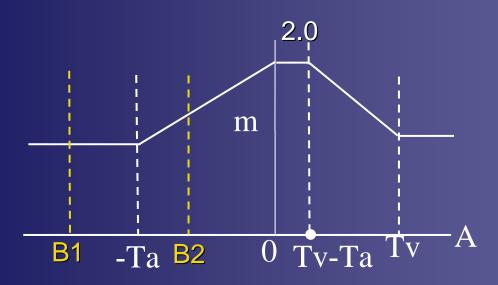

January 15, 2008 (6)

Outline

- Coupling aware timing analysis
- Charge sharing based accurate coupling model
- Logic filtering overview
- Filtering algorithm
- Experimental results
- Conclusions


Coupling Model

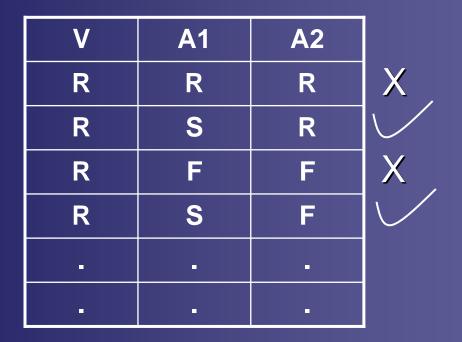
- Arrival time and slope based coupling model (charge sharing)
 - m = f(victim arrival time and slope, aggressor arrival time and slope)
- Circuit model for Noise cluster



Arrival Time : 0% , Slope : 0-100%, difference in arrival times = A

m vs A Plot (Similar Switching)

Model Extension to Static Timing

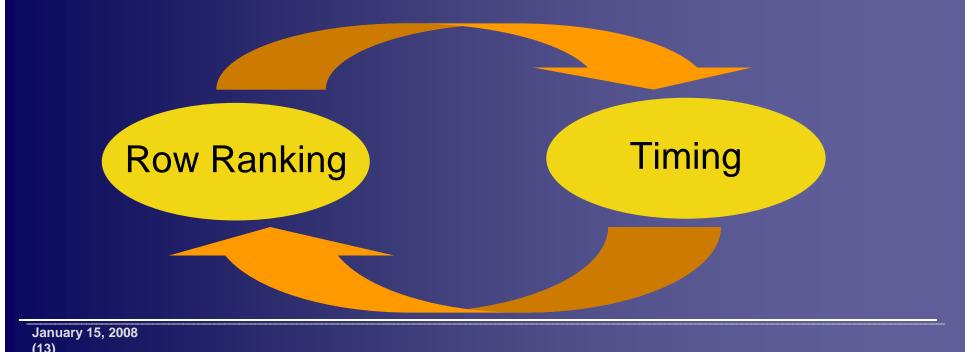

- Bounds B1,B2 obtained by AT difference
- Ta : Min TT associated with Aggressor
- Tv : Max TT associated with Victim
- Worst m within B1 and B2

Outline

- Coupling aware timing analysis
- Charge sharing based accurate coupling model
- Logic Filtering overview
- Filtering algorithm
- Experimental results
- Conclusions

Logic Filtering

Worst case might not happen (Due to Logic)



- Idea is to find "worst" logically feasible row
 - Worst = Worst stage delay

Logic Filtering: Chicken Egg Problem

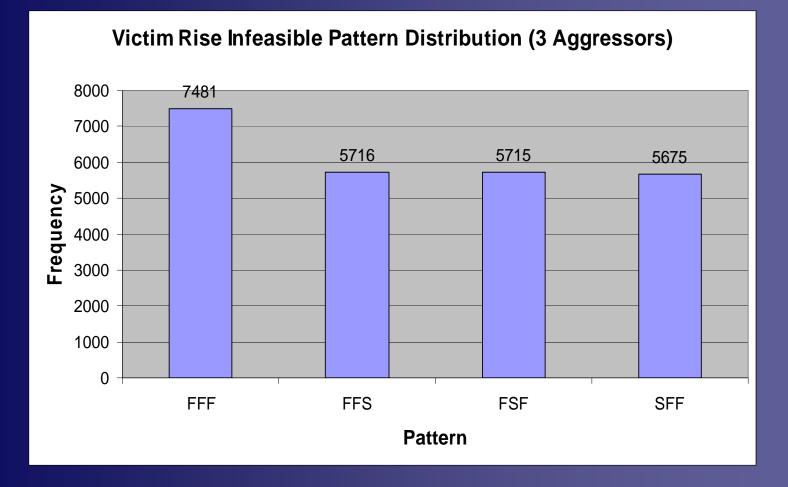
Worst row generation (ranking) from Logic Tables

- Row rank R = f(m, P) where P = Parasitics
- m = g(A, Tv, Ta)
- A = h1(m, P), Tv = h2(m, P), Ta = h3(m, P)

Logic Table Generation

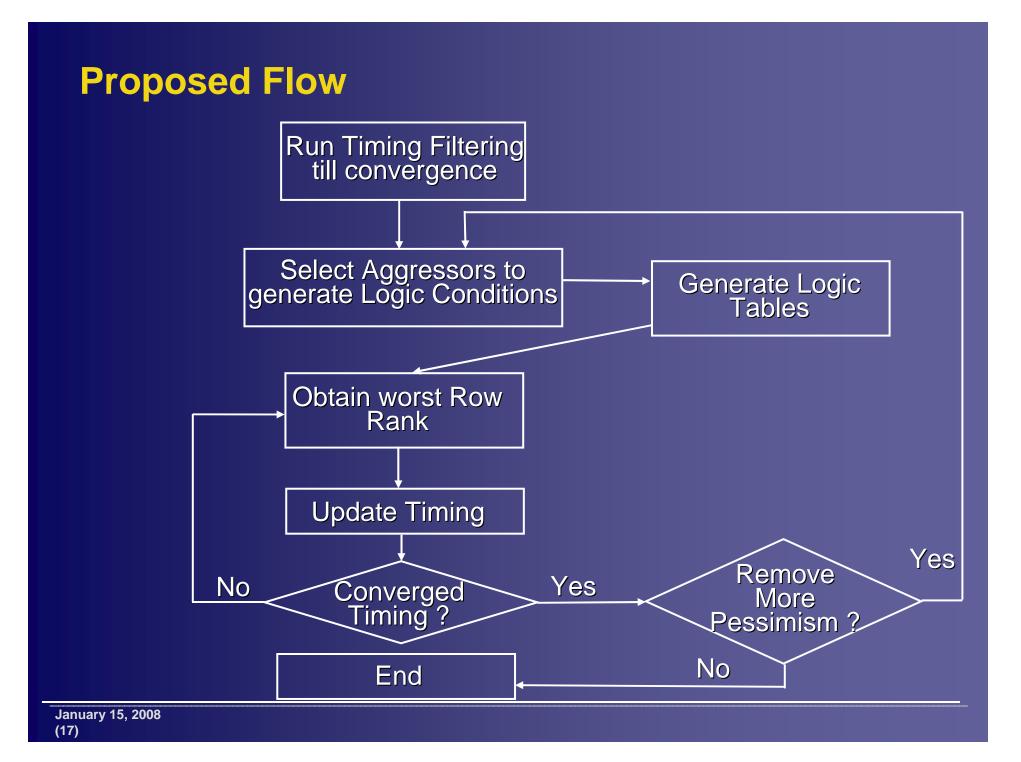
We used

- Random circuit simulation with vectors
- Logic implication based pruning
- ATPG based techniques
- SAT based techniques


Guaranteed conservative ignoring glitches

0-delay model

Complexity: expensive if SAT clause > 6 literals


- 20K Victim nets, 5 aggressors each : 20Kx2x3³ = 1,080,000 = ¹/₂ day
- If Aggressors = Median of #aggs (25) : 20Kx2x3²⁵ = EEK!
- We used clause size 4: 1 victim, 3 aggressors

Logic Condition Generation

Outline

- Coupling aware timing analysis
- Charge sharing based accurate coupling model
- Logic Filtering overview
- Filtering algorithm
- Experimental results
- Conclusions

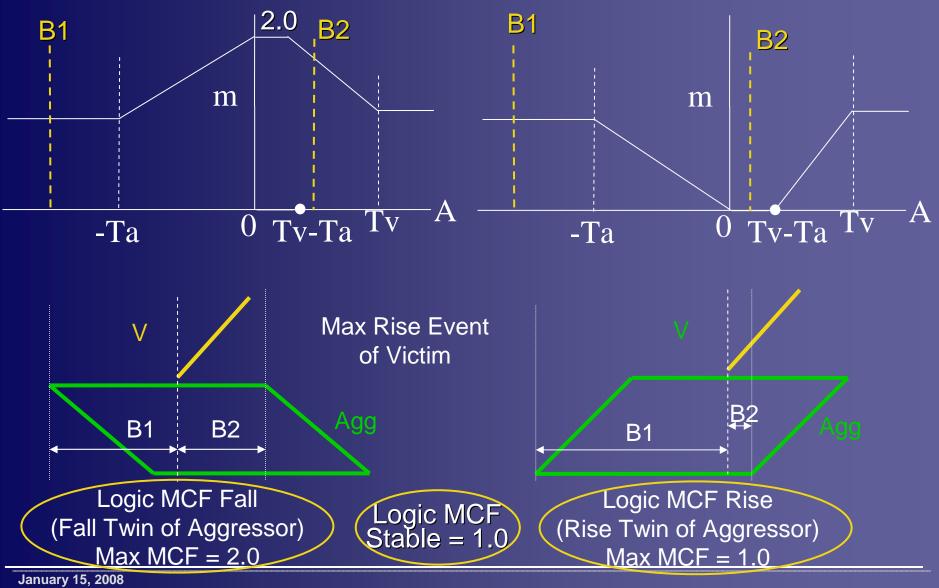
Aggressor Selection

Compute sensitivities of each aggressor

- Victim V, 3 Aggressors A1, A2, A3
- Converged Timing m's : m1_{nom}, m2_{nom}, m3_{nom}
- Receiver elmore delay = f(m1,m2,m3)

• $f(m1,m2,m3) = f(m1_{nom}, m2_{nom}, m3_{nom})$ + $(\partial f/\partial m1)x(m1 - m1_{nom}) + \dots$

- $\partial f/\partial m1 = {f(m1, m2_{nom}, m3_{nom}) f(m1_{nom}, m2_{nom}, m3_{nom})}/{(m1 m1_{nom})}$
- $S_{m1} = (\partial f/\partial m1)/f(m1_{nom}, m2_{nom}, m3_{nom})$
- Change m1 to 1.0 for ∂f/∂m1 computation


Logic Filtering Algorithm

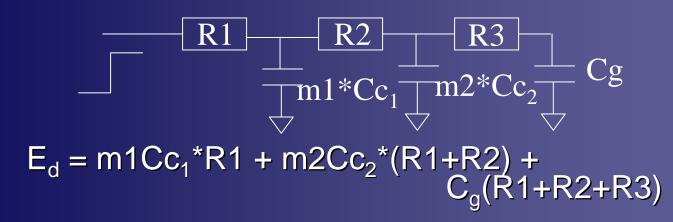
- Initialization : $Imcf_0, mcf_0 \leftarrow (0,2)$, $Windows_0 \leftarrow f(mcf_0)$
- while(|Windows_i Windows_{i-1}| > ε)
 - if(LOGIC_FILTERING)
 - Compute Imcf_i for selected aggressors
 - R ← Identify worse ranked row using Imcf_i
 - mcf_i ← g(Windows_{i-1}, R)
 - else if (TIMING_FILTERING)
 - mcf_i ← h(Windows_{i-1})
 - Windows_i ← f(mcf_i)

Logic MCF

Fix Point Computation

Logic MCF Computation (Example)

Logic Filtering Algorithm: Worst Row Calculation


- Given Victim Cluster <V,A1,A2,A3>
- x-caps: CC_{A1}, CC_{A2}, CC_{A3}
- LMCFs: LMCF_{A1}, LMCF_{A2}, LMCF_{A3}
- Logic Feasibility Table for cluster

V	A1	A2	A3
 R	F	S	S
R	S	R	S
F	S	S	R
F	S	R	S

 $Rank = LMCF_{A1}[F]xCC_{A1} + LMCF_{A2}[S]xCC_{A2} + LMCF_{A3}[S]xCC_{A3}$

Accurate Ranking

- We should not ignore resistances and ground cap !
- Circuit model of victim cluster

- Ranking by Elmore delay computation
 - Choose the row with worst Elmore delay

- Consider MAX RISE event of victim
- CC_{A1}= 3, CC_{A2 =} 2.5, CC_{A3}=2
- LMCF_{A1}={ F = 2.0, R = 1.0, S = 1}, LMCF_{A2}={ F = 1.8, R = 1.0, S = 1}

V	A1	A2	A3
R	F	S	S
R	S	R	S
F	S	S	R
F	S	R	S

Iteration i Rank(i) = 2.0x3+1.0x2.5+1.0x2 = 10.5Rank(i) = 1.8x3+1.0x2.5+1.0x2 = 9.9

- Consider MAX RISE event of victim
- CC_{A1}= 3, CC_{A2 =} 2.5, CC_{A3}=2
- LMCF_{A1}={ F = 2.0, R = 1.0, S = 1}, LMCF_{A2}={ F = 1.8, R = 1.0, S = 1}

V	A1	A2	A 3
R	F	S	S
R	S	R	S
F	S	S	R
F	S	R	S

Iteration i Rank(i) = 2.0x3+1.0x2.5+1.0x2 = 10.5Rank(i) = 1.8x3+1.0x2.5+1.0x2 = 9.9

- Consider MAX RISE event of victim
- $CC_{A1} = 3, CC_{A2} = 2.5, CC_{A3} = 2$
- $LMCF_{A1} = \{ F = 1.6, R = 1, S = 1 \}$, $LMCF_{A2} = \{ F = 1.7, R = 1, S = 1 \}$

V	A1	A2	A3
R	F	S	S
R	S	R	S
F	S	S	R
F	S	R	S

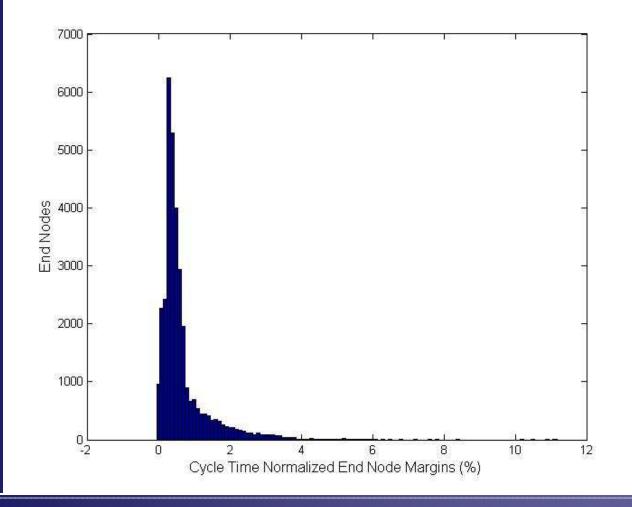
Iteration i+1

Rank(i+1) = 1.6x3+1.0x2.5+1.0x2= 9.3Rank(i+1) = 1.7x3+1.0x2.5+1.0x2= 9.6

- Consider MAX RISE event of victim
- CC_{A1}= 3, CC_{A2 =} 2.5, CC_{A3}=2
- $LMCF_{A1} = \{ F = 1.6, R = 1, S = 1 \}, LMCF_{A2} = \{ F = 1.7, R = 1, S = 1 \}$

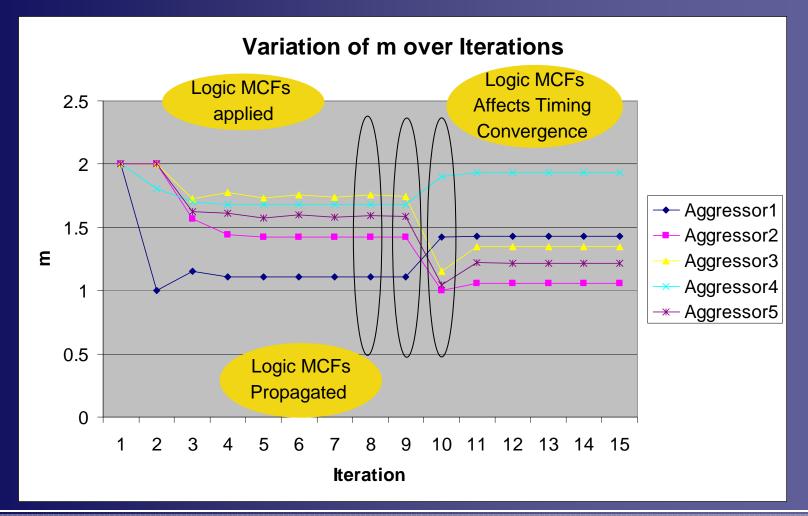
V	A1	A2	A 3
R	F	S	S
R	S	R	S
F	S	S	R
F	S	R	S

Iteration i+1 Rank(i+1) = 1.6x3+1.0x2.5+1.0x2= 9.3Rank(i+1) = 1.7x3+1.0x2.5+1.0x2= 9.6


Must Consider same direction Even in MAX !

Outline

- Coupling aware timing analysis
- Charge sharing based accurate coupling model
- Logic Filtering overview
- Filtering algorithm
- Experimental results
- Conclusions


Results

- Pessimism Reduction
 - Logic Conditions applied after 8 iterations.
 - Maximum : 11.18% Median : 0.44%

Results

Variation of m under logic + timing iterations

January 15, 2008 (29)

Outline

- Coupling aware timing analysis
- Charge sharing based accurate coupling model
- Logic Filtering overview
- Filtering algorithm
- Experimental results
- Conclusions

Conclusions

- Proposed novel algorithm to do coupling aware static timing analysis with logic constraints
- Dynamics of complex coupling model under timing and logic filtering is presented
- Iterations are needed to generate conservative timing data
- 11.18% maximum pessimism reduction observed on a functional block from 65 nm industrial microprocessor
- Future work includes extending such a model to statistical timing analysis and optimization

Thank You