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What Is clock skew scheduling

Take the clock arrival time to each flip-flop as a
manageable resource

It can promote many kinds of optimizations
But usually for timing

It is friendly to ASIC flow

— We design synthesizable processor cores and SoCs
— SO0 we are interested.



CSS for timing

e Period optimization
— Achieve the minimum clock period
— Stop when critical paths construct a loop
« Slack optimization
— Enlarge the slacks of critical paths, wherever possible
— Balance the slacks of critical paths and their neighbors
« Ultilizing period opt. algorithms for slack opit.

— We presented the approach at DAC’06
— We ignore the hold time constrains, safely



Today’s Topic: Speed up CSS

e How?
— Faster graph-theoretic CSS algorithms
— Partial delay extraction
e Why?
— Shorter turn-around time
— Integration with front-end tools



Previous CSS algorithms

e Binary search for the minimum clock period
— Takahashi, IEICE’06, O(jm+j2n)
— J: number of arcs in a shortest tralil
* Incrementally decrease the clock period
— Burns, ICCAD’03, O(n%m)
— Albrecht, DATE’06, O(nm+nZ?logn)

o Partial delay extraction
— Albrecht, DATE’'06



We want:

e Alinear-time CSS algorithm
— Like Takahashi’s algorithm
— Solves the period optimization problem

* Allows partial delay extraction
— Like Albrecht's algorithm
— Linear-time for delay extraction

« Easy to extend to slack optimization
— Still linear-time



The key of our approach

A CSS algorithm whose iteration count has a
constant upper-bound!
— The time complexity of each iteration is linear
— So the whole algorithm is linear-time

 The constant upper-bound also resulted in an
efficient partial delay extraction strategy

— A linear-time delay extraction is performed after each
iteration



The key of our algorithm

 We use discrete values (integers)
— Ease the design and analysis of our algorithm
— The error is no larger than one delay unit

— The error of path delays caused by inaccurate RC
estimation is usually tens of picoseconds in pre-route
designs (our design experience)

— Remember CSS is before CTS, no detailed route
Information is available.



Problem formulation with integers

e Period optimization
— Find a minimal clock period under which
— some 1-slack and 0-zero slack arcs construct a loop

« Slack optimization

— For each node, the minimum incoming slack and
outgoing slack are all large enough, or

— their difference is no larger than one



« Slack passing or timing borrow

The basic idea of CSS

e slac k:Tperiod-Tpath- Lstart+Lend
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The basic idea of CSS

« Let the DAG with critical arcs grow!
— Add new arcs to the DAG to reduce its average arc delay
— The slacks of the new-added arcs are “borrowed”
— Until it is no longer a directed acyclic graph
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How does our DAG look like

e Both 1-slack arcs and 0O-slack arcs are critical arcs

|

/
DA
/
e Maximum level: the maximum number of 0-slack
arcs in a path from source to sink

Maximum level=4
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Overview of our algorithm

Stepl:
the buo

Step2:

n reversed topological order, calculate
get for the increment of the clock latency

n topological order, increase the clock

latencies to change 0-slack into 1-slack

Step3: If there is no 0-slack arc, decrease the
clock period, changing 1-slack into O-slack

Iterate over these steps until a cycle of
critical arcs are discovered.
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Stepl: the budget for increasing latency: 6

e Constraints from two kinds of arcs
— Critical arc (u,v): ©’
» budget(u)=budget(v) if slack(u,v)=1
* budget(u)=budget(v)-1 if slack(u,v)=0 Make it 1-slack arc!
— Non-critical arc: 65

* As long as it will not be a 0-slack arc.
« 1-slack is OK

— ©’ Is decided by ©g of some downstream node
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Step?2: increasing the latencies

 If the budget allows it, increase the clock latency
of v, to turn the 0-slack arcs ending at v to 1-slack

A node is live if at least one of its upstream arcs is
O-slack. Dead nodes need no visit in this step.
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Why is this algorithm faster?

Each leaf live node “grows” or dies!
If budget is enough to eliminate O-slack arcs, it dies

If budget is not enough, some non-critical outgoing
arc will be 1-slack and be added to the DAG.

At each iteration, multiple arcs are added to DAG!

In Burns’ algorithm and Albrecht’s algorithm, only
one arc for each iteration
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Complexity Analysis

If budgets are all enough, 0-slacks are eliminated
at one iteration

If budgets are not enough, at least each new-added
arc will “counteract” one 0-slack arc

The maximum level decreases at each iteration

K: the upper bound for the maximum level
— In real circuits, it can be looked as a constant

After at most k iterations, period Is decreased by 1

Clock period also has a constant upper bound

— So the total iteration count has a constant upper bound
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Partial delay extraction

e Our recent work, today just go through the basic
iIdeas

 All the algorithm need to known is 6 (and which
non-critical arc decides ©g)

* O Is decided by the longest non-critical path
— Or we can name it as “the next longest path”
— Or “the longest arc of the arcs we have not known”
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Two passes to compute O4

* D, : maximum propagation delay from Q pins of
flip-flops to a combinational cell
— A pass in topological order

* D, : maximum propagation delay from a

combination cell to D pins of flip-flops, following
a non-critical path(D;, +D,.<threshold)

— A pass in reversed topological order
Threshold=7/

A 3 _x FF2 :
1 3 Dfs(C)=4
FF / N c/ Dte(C)=2
N / N Dte(FF1)=6
™ g FF3 Og(FF1)=7-6=1
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Linear time for delay extraction

Each pass is linear-time
Total iteration count has constant upper bound

Actually, updating ©5 does not need two FULL
passes

Only a few of nodes change their latencies , only
a few gates need to change their D;,and D,
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Let the DAG grow at both directions
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Experimental results

e \WWe can now reduce the total runtime of CSS to
minutes, for the biggest block in IWLS2005, b19

* The synthesis process takes one hour for
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Thank You!



