A Fast Incremental Clock
Skew Scheduling Algorithm for
Slack Optimization

Kui Wang, Hao Fang, Hu Xu, Xu Cheng
Microprocessor research and development
center of Peking University, Beljing



What Is clock skew scheduling

Take the clock arrival time to each flip-flop as a
manageable resource

It can promote many kinds of optimizations
But usually for timing

It is friendly to ASIC flow

— We design synthesizable processor cores and SoCs
— SO0 we are interested.



CSS for timing

e Period optimization
— Achieve the minimum clock period
— Stop when critical paths construct a loop
« Slack optimization
— Enlarge the slacks of critical paths, wherever possible
— Balance the slacks of critical paths and their neighbors
« Ultilizing period opt. algorithms for slack opit.

— We presented the approach at DAC’06
— We ignore the hold time constrains, safely



Today’s Topic: Speed up CSS

e How?
— Faster graph-theoretic CSS algorithms
— Partial delay extraction
e Why?
— Shorter turn-around time
— Integration with front-end tools



Previous CSS algorithms

e Binary search for the minimum clock period
— Takahashi, IEICE’06, O(jm+j2n)
— J: number of arcs in a shortest tralil
* Incrementally decrease the clock period
— Burns, ICCAD’03, O(n%m)
— Albrecht, DATE’06, O(nm+nZ?logn)

o Partial delay extraction
— Albrecht, DATE’'06



We want:

e Alinear-time CSS algorithm
— Like Takahashi’s algorithm
— Solves the period optimization problem

* Allows partial delay extraction
— Like Albrecht's algorithm
— Linear-time for delay extraction

« Easy to extend to slack optimization
— Still linear-time



The key of our approach

A CSS algorithm whose iteration count has a
constant upper-bound!
— The time complexity of each iteration is linear
— So the whole algorithm is linear-time

 The constant upper-bound also resulted in an
efficient partial delay extraction strategy

— A linear-time delay extraction is performed after each
iteration



The key of our algorithm

 We use discrete values (integers)
— Ease the design and analysis of our algorithm
— The error is no larger than one delay unit

— The error of path delays caused by inaccurate RC
estimation is usually tens of picoseconds in pre-route
designs (our design experience)

— Remember CSS is before CTS, no detailed route
Information is available.



Problem formulation with integers

e Period optimization
— Find a minimal clock period under which
— some 1-slack and 0-zero slack arcs construct a loop

« Slack optimization

— For each node, the minimum incoming slack and
outgoing slack are all large enough, or

— their difference is no larger than one



« Slack passing or timing borrow

The basic idea of CSS

e slac k:Tperiod-Tpath- Lstart+Lend

u/0

u/0

10

10

» /0

» v/ 1

» W/0

» w/0

slack(u,v)=-1
slack(v,w)=1

slack(u,v)=0
slack(v,w)=0

10



The basic idea of CSS

« Let the DAG with critical arcs grow!
— Add new arcs to the DAG to reduce its average arc delay
— The slacks of the new-added arcs are “borrowed”
— Until it is no longer a directed acyclic graph

VVERV.VERV,
A ANAYA
AN ANV TA

11



How does our DAG look like

e Both 1-slack arcs and 0O-slack arcs are critical arcs

|

/
DA
/
e Maximum level: the maximum number of 0-slack
arcs in a path from source to sink

Maximum level=4

12



Overview of our algorithm

Stepl:
the buo

Step2:

n reversed topological order, calculate
get for the increment of the clock latency

n topological order, increase the clock

latencies to change 0-slack into 1-slack

Step3: If there is no 0-slack arc, decrease the
clock period, changing 1-slack into O-slack

Iterate over these steps until a cycle of
critical arcs are discovered.

13



Stepl: the budget for increasing latency: 6

e Constraints from two kinds of arcs
— Critical arc (u,v): ©’
» budget(u)=budget(v) if slack(u,v)=1
* budget(u)=budget(v)-1 if slack(u,v)=0 Make it 1-slack arc!
— Non-critical arc: 65

* As long as it will not be a 0-slack arc.
« 1-slack is OK

— ©’ Is decided by ©g of some downstream node

14



Step?2: increasing the latencies

 If the budget allows it, increase the clock latency
of v, to turn the 0-slack arcs ending at v to 1-slack

A node is live if at least one of its upstream arcs is
O-slack. Dead nodes need no visit in this step.

15



Why is this algorithm faster?

Each leaf live node “grows” or dies!
If budget is enough to eliminate O-slack arcs, it dies

If budget is not enough, some non-critical outgoing
arc will be 1-slack and be added to the DAG.

At each iteration, multiple arcs are added to DAG!

In Burns’ algorithm and Albrecht’s algorithm, only
one arc for each iteration

16



Complexity Analysis

If budgets are all enough, 0-slacks are eliminated
at one iteration

If budgets are not enough, at least each new-added
arc will “counteract” one 0-slack arc

The maximum level decreases at each iteration

K: the upper bound for the maximum level
— In real circuits, it can be looked as a constant

After at most k iterations, period Is decreased by 1

Clock period also has a constant upper bound

— So the total iteration count has a constant upper bound
17



Partial delay extraction

e Our recent work, today just go through the basic
iIdeas

 All the algorithm need to known is 6 (and which
non-critical arc decides ©g)

* O Is decided by the longest non-critical path
— Or we can name it as “the next longest path”
— Or “the longest arc of the arcs we have not known”

18



Two passes to compute O4

* D, : maximum propagation delay from Q pins of
flip-flops to a combinational cell
— A pass in topological order

* D, : maximum propagation delay from a

combination cell to D pins of flip-flops, following
a non-critical path(D;, +D,.<threshold)

— A pass in reversed topological order
Threshold=7/

A 3 _x FF2 :
1 3 Dfs(C)=4
FF / N c/ Dte(C)=2
N / N Dte(FF1)=6
™ g FF3 Og(FF1)=7-6=1

19



Linear time for delay extraction

Each pass is linear-time
Total iteration count has constant upper bound

Actually, updating ©5 does not need two FULL
passes

Only a few of nodes change their latencies , only
a few gates need to change their D;,and D,

20



Let the DAG grow at both directions

\/\/
/\
A

\/\./ VAVAN T
7\ 7\ e
\ j\, éj/\ latencies |



Experimental results

e \WWe can now reduce the total runtime of CSS to
minutes, for the biggest block in IWLS2005, b19

* The synthesis process takes one hour for

160
140
120
100

80

60

40
20
0

0 Runtime for CSS

B Run time for Delay
Extraction

019

22



Thank You!



