A Fast Incremental Clock Skew Scheduling Algorithm for Slack Optimization

Kui Wang, Hao Fang, Hu Xu, Xu Cheng Microprocessor research and development center of Peking University, Beijing

What is clock skew scheduling

- Take the clock arrival time to each flip-flop as a manageable resource
- It can promote many kinds of optimizations
- But usually for timing
- It is friendly to ASIC flow
 - We design synthesizable processor cores and SoCs
 - So we are interested.

CSS for timing

- Period optimization
 - Achieve the minimum clock period
 - Stop when critical paths construct a loop
- Slack optimization
 - Enlarge the slacks of critical paths, wherever possible
 - Balance the slacks of critical paths and their neighbors
- Utilizing period opt. algorithms for slack opt.
 - We presented the approach at DAC'06
 - We ignore the hold time constrains, **safely**

Today's Topic: Speed up CSS

- How?
 - Faster graph-theoretic CSS algorithms
 - Partial delay extraction
- Why?
 - Shorter turn-around time
 - Integration with front-end tools

Previous CSS algorithms

- Binary search for the minimum clock period
 - Takahashi, IEICE'06, *O(jm+j²n)*
 - *j*: number of arcs in a shortest trail
- Incrementally decrease the clock period
 - Burns, ICCAD'03, *O(n²m)*
 - Albrecht, DATE'06, O(nm+n²logn)
- Partial delay extraction
 - Albrecht, DATE'06

We want:

- A linear-time CSS algorithm
 - Like Takahashi's algorithm
 - Solves the period optimization problem
- Allows partial delay extraction
 - Like Albrecht's algorithm
 - Linear-time for delay extraction
- Easy to extend to slack optimization
 - Still linear-time

The key of our approach

- A CSS algorithm whose iteration count has a constant upper-bound!
 - The time complexity of each iteration is linear
 - So the whole algorithm is linear-time
- The constant upper-bound also resulted in an efficient partial delay extraction strategy
 - A linear-time delay extraction is performed after each iteration

The key of our algorithm

- We use discrete values (integers)
 - Ease the design and analysis of our algorithm
 - The error is no larger than one delay unit
 - The error of path delays caused by inaccurate RC estimation is usually tens of picoseconds in pre-route designs (our design experience)
 - Remember CSS is before CTS, no detailed route information is available.

Problem formulation with integers

- Period optimization
 - Find a minimal clock period under which
 - some 1-slack and 0-zero slack arcs construct a loop
- Slack optimization
 - For each node, the minimum incoming slack and outgoing slack are all large enough, or
 - their difference is no larger than one

The basic idea of CSS

- Slack passing or timing borrow
- slack=Tperiod-Tpath-Lstart+Lend

$$u/0 \xrightarrow{10} v/0 \xrightarrow{8} w/0 \qquad \begin{array}{c} slack(u,v) = -1 \\ slack(v,w) = 1 \end{array}$$
$$u/0 \xrightarrow{10} v/1 \xrightarrow{8} w/0 \qquad \begin{array}{c} slack(u,v) = 0 \\ slack(v,w) = 0 \end{array}$$

The basic idea of CSS

- Let the DAG with critical arcs grow!
 - Add new arcs to the DAG to reduce its average arc delay
 - The slacks of the new-added arcs are "borrowed"
 - Until it is no longer a directed acyclic graph

How does our DAG look like

• Both 1-slack arcs and 0-slack arcs are critical arcs

Maximum level=4

 Maximum level: the maximum number of 0-slack arcs in a path from source to sink

Overview of our algorithm

- Step1: In reversed topological order, calculate the budget for the increment of the clock latency
- Step2: In topological order, increase the clock latencies to change 0-slack into 1-slack
- Step3: If there is no 0-slack arc, decrease the clock period, changing 1-slack into 0-slack
- Iterate over these steps until a cycle of critical arcs are discovered.

Step1: the budget for increasing latency: ⊖

- Constraints from two kinds of arcs
 - Critical arc (u,v): ⊖'
 - budget(u)=budget(v) if slack(u,v)=1
 - budget(u)=budget(v)-1 if slack(u,v)=0 Make it 1-slack arc!
 - Non-critical arc: Θ_{B}
 - As long as it will not be a 0-slack arc.
 - 1-slack is OK
 - Θ is decided by Θ_B of some downstream node

Step2: increasing the latencies

- If the budget allows it, increase the clock latency of v, to turn the 0-slack arcs ending at v to 1-slack
- A node is live if at least one of its upstream arcs is 0-slack. Dead nodes need no visit in this step.

Why is this algorithm faster?

- Each leaf live node "grows" or dies!
- If budget is enough to eliminate 0-slack arcs, it dies
- If budget is not enough, some non-critical outgoing arc will be 1-slack and be added to the DAG.
- At each iteration, multiple arcs are added to DAG!
- In Burns' algorithm and Albrecht's algorithm, only one arc for each iteration

Complexity Analysis

- If budgets are all enough, 0-slacks are eliminated at one iteration
- If budgets are not enough, at least each new-added arc will "counteract" one 0-slack arc
- The maximum level decreases at each iteration
- k: the upper bound for the maximum level
 In real circuits, it can be looked as a constant
- After at most *k* iterations, period is decreased by 1
- Clock period also has a constant upper bound
 So the total iteration count has a constant upper bound

Partial delay extraction

- Our recent work, today just go through the basic ideas
- All the algorithm need to known is Θ_B (and which non-critical arc decides Θ_B)
- $\Theta_{\rm B}$ is decided by the longest non-critical path
 - Or we can name it as "the next longest path"
 - Or "the longest arc of the arcs we have not known"

Two passes to compute Θ_B

 D_{fs}: maximum propagation delay from Q pins of flip-flops to a combinational cell

- A pass in topological order

D_{te}: maximum propagation delay from a combination cell to D pins of flip-flops, following a non-critical path(D_{fs} +D_{te}<threshold)

- A pass in reversed topological order

Threshold=7 Dfs(C)=4 Dte(C)=2 Dte(FF1)=6 $\Theta_{B}(FF1)=7-6=1$

Linear time for delay extraction

- Each pass is linear-time
- Total iteration count has constant upper bound
- Actually, updating Θ_B does not need two FULL passes
- Only a few of nodes change their latencies, only a few gates need to change their D_{fs} and D_{te}

Experimental results

- We can now reduce the total runtime of CSS to minutes, for the biggest block in IWLS2005, b19
- The synthesis process takes one hour for b19

Thank You!