
A Fast Incremental Clock
Skew Scheduling Algorithm for

Slack Optimization

Kui Wang, Hao Fang, Hu Xu, Xu Cheng
Microprocessor research and development

center of Peking University, Beijing

2

What is clock skew scheduling

• Take the clock arrival time to each flip-flop as a
manageable resource

• It can promote many kinds of optimizations
• But usually for timing
• It is friendly to ASIC flow

– We design synthesizable processor cores and SoCs
– So we are interested.

3

CSS for timing

• Period optimization
– Achieve the minimum clock period
– Stop when critical paths construct a loop

• Slack optimization
– Enlarge the slacks of critical paths, wherever possible
– Balance the slacks of critical paths and their neighbors

• Utilizing period opt. algorithms for slack opt.
– We presented the approach at DAC’06
– We ignore the hold time constrains, safely

4

Today’s Topic: Speed up CSS

• How?
– Faster graph-theoretic CSS algorithms
– Partial delay extraction

• Why?
– Shorter turn-around time
– Integration with front-end tools

5

Previous CSS algorithms

• Binary search for the minimum clock period
– Takahashi, IEICE’06, O(jm+j2n)
– j: number of arcs in a shortest trail

• Incrementally decrease the clock period
– Burns, ICCAD’03, O(n2m)
– Albrecht, DATE’06, O(nm+n2logn)

• Partial delay extraction
– Albrecht, DATE’06

6

We want:

• A linear-time CSS algorithm
– Like Takahashi’s algorithm
– Solves the period optimization problem

• Allows partial delay extraction
– Like Albrecht's algorithm
– Linear-time for delay extraction

• Easy to extend to slack optimization
– Still linear-time

7

The key of our approach

• A CSS algorithm whose iteration count has a
constant upper-bound!
– The time complexity of each iteration is linear
– So the whole algorithm is linear-time

• The constant upper-bound also resulted in an
efficient partial delay extraction strategy
– A linear-time delay extraction is performed after each

iteration

8

The key of our algorithm

• We use discrete values (integers)
– Ease the design and analysis of our algorithm
– The error is no larger than one delay unit
– The error of path delays caused by inaccurate RC

estimation is usually tens of picoseconds in pre-route
designs (our design experience)

– Remember CSS is before CTS, no detailed route
information is available.

9

Problem formulation with integers

• Period optimization
– Find a minimal clock period under which
– some 1-slack and 0-zero slack arcs construct a loop

• Slack optimization
– For each node, the minimum incoming slack and

outgoing slack are all large enough, or
– their difference is no larger than one

10

The basic idea of CSS

• Slack passing or timing borrow

• slack=Tperiod-Tpath-Lstart+Lend

u/0 v/0 w/010 8
slack(u,v)=-1

slack(v,w)=1

u/0 v/1 w/010 8
slack(u,v)=0

slack(v,w)=0

11

The basic idea of CSS
• Let the DAG with critical arcs grow!

– Add new arcs to the DAG to reduce its average arc delay
– The slacks of the new-added arcs are “borrowed”
– Until it is no longer a directed acyclic graph

12

How does our DAG look like

• Both 1-slack arcs and 0-slack arcs are critical arcs

• Maximum level: the maximum number of 0-slack
arcs in a path from source to sink

Maximum level=4

13

Overview of our algorithm

• Step1: In reversed topological order, calculate
the budget for the increment of the clock latency

• Step2: In topological order, increase the clock
latencies to change 0-slack into 1-slack

• Step3: If there is no 0-slack arc, decrease the
clock period, changing 1-slack into 0-slack

• Iterate over these steps until a cycle of
critical arcs are discovered.

14

Step1: the budget for increasing latency: θ

• Constraints from two kinds of arcs
– Critical arc (u,v): θ’

• budget(u)=budget(v) if slack(u,v)=1
• budget(u)=budget(v)-1 if slack(u,v)=0 Make it 1-slack arc!

– Non-critical arc: θB
• As long as it will not be a 0-slack arc.
• 1-slack is OK

– θ’ is decided by θB of some downstream node

A B C D
4

42

2

θ(A)=0

θ(B)=1

θ(C)=2

θ(D)=3

15

Step2: increasing the latencies

• If the budget allows it, increase the clock latency
of v, to turn the 0-slack arcs ending at v to 1-slack

• A node is live if at least one of its upstream arcs is
0-slack. Dead nodes need no visit in this step.

16

Why is this algorithm faster?

• Each leaf live node “grows” or dies!
• If budget is enough to eliminate 0-slack arcs, it dies
• If budget is not enough, some non-critical outgoing

arc will be 1-slack and be added to the DAG.
• At each iteration, multiple arcs are added to DAG!
• In Burns’ algorithm and Albrecht’s algorithm, only

one arc for each iteration

17

Complexity Analysis

• If budgets are all enough, 0-slacks are eliminated
at one iteration

• If budgets are not enough, at least each new-added
arc will “counteract” one 0-slack arc

• The maximum level decreases at each iteration
• k: the upper bound for the maximum level

– In real circuits, it can be looked as a constant
• After at most k iterations, period is decreased by 1
• Clock period also has a constant upper bound

– So the total iteration count has a constant upper bound

18

Partial delay extraction

• Our recent work, today just go through the basic
ideas

• All the algorithm need to known is θB (and which
non-critical arc decides θB)

• θB is decided by the longest non-critical path
– Or we can name it as “the next longest path”
– Or “the longest arc of the arcs we have not known”

19

Two passes to compute θB

• Dfs : maximum propagation delay from Q pins of
flip-flops to a combinational cell
– A pass in topological order

• Dte : maximum propagation delay from a
combination cell to D pins of flip-flops, following
a non-critical path(Dfs +Dte<threshold)
– A pass in reversed topological order

FF1

FF2

FF3

A

B

C

1

1

3

2

3

2

Threshold=7
Dfs(C)=4
Dte(C)=2

Dte(FF1)=6
θB(FF1)=7-6=1

20

Linear time for delay extraction

• Each pass is linear-time
• Total iteration count has constant upper bound

• Actually, updating θB does not need two FULL
passes

• Only a few of nodes change their latencies , only
a few gates need to change their Dfs and Dte

21

Let the DAG grow at both directions

Make less
change
to clock

latencies!

22

Experimental results

0

20

40

60

80

100

120

140

160

 b

17

 b

18

 b

19

 s
35

93
2

 s

38
41

7

 s
38

58
4

pc
i_

br
id

ge
us

b_
fu

nc
t

Runtime for CSS

Run time for Delay
Extraction

• We can now reduce the total runtime of CSS to
minutes, for the biggest block in IWLS2005, b19

• The synthesis process takes one hour for b19

Thank You!

