Soft Error Rate Reduction Using Redundancy Addition and Removal

Kai-Chiang Wu and Diana Marculescu ECE Department Carnegie Mellon University

Soft Errors

- A soft error occurs when
 - a radiation-induced transient event causes a charge disturbance that flips the state of a storage element.
 - Such a bit-flip is called a *single-event transient* (**SET**) or a glitch.
- Definitions
 - A soft error is often referred to as a *single-event upset* (**SEU**).
 - The rate at which soft errors occur is called *soft error rate* (**SER**).
- Current technology scaling trends shrinking feature sizes, etc.
 - Circuits become more susceptible to radiation-induced particle hits.
 - Particles with **less** energy could flip the states of storage elements.

Scaling Trends of Masking Factors

- Logical masking is decreased due to
 - decreasing logic depth
- Electrical masking is decreased due to
 - faster logic gates
 - lower supply voltages
 - smaller node capacitances
- Latching-window masking is decreased due to
 - increasing clock frequencies

Outline

- Background and motivation
- Related work
- Proposed framework
 - Redundancy addition and removal (RAR)
 - Metrics for gate characterization
 - Constraints on RAR
- Results and conclusion

Related Work

- Triple Modular Redundancy (**TMR**)
 - consists of three identical copies and a majority voter.
 - incurs more than 200% overhead in terms of area and power.
- Partial duplication [Mohanram *et al.*, 2003] / gate sizing [Zhou *et al.*, 2004]
 - targets gates with high error impact.
 - incurs potentially large area overhead.
- Flip-flop selection [Joshi et al., 2006]
 - increases the length of latching windows.
 - focuses only on latching-window masking.

Proposed Framework

- Using *Redundancy Addition and Removal* (**RAR**)
 - Iteratively add and remove redundant wires to minimize a circuit in terms of **literal count**.
- RAR for SER reduction
 - Estimate the effects of redundancy manipulations.
 - Accept only those with **positive impact** on SER.
- Advantages over other techniques
 - Very little area overhead
 - **Unified treatment** of three masking factors via decision diagrams
 - **Precise estimation** of SER impact of added and removed wires

RAR: Combinational and Sequential Logic Optimization by Redundancy Addition and Removal [Entrena and Cheng, 1995]

Outline

- Background and motivation
- Related work
- Proposed framework
 - Redundancy addition and removal (RAR)
 - Metrics for gate characterization
 - Constraints on RAR
- Results and conclusion

Framework Overview

Apply RAR to identify redundant wires/gates

Define metrics to characterize wires/gates in terms of SER impact

Set up constraints to accept only beneficial redundancy manipulations

RAR – An Introduction

[Entrena and Cheng, 1995]

- Add a redundant wire found by mandatory assignments during *automatic test pattern generation* (**ATPG**).
 - The newly added wire could cause one or more originally irredundant wires/gates to become redundant (removable).
- Remove those redundant wires due to the added wire.
 - Delete gates with only one fanin and gates without any fanout.
- Repeat until no further improvement can be done.
 - The circuit will become smaller if the removed redundancies are more than the added redundancies.

RAR – For SER Reduction

- Apply RAR for SER reduction with little area penalty.
- **Unsystematic** RAR may increase SER by reducing the number of gates or the depth of circuits.
- Solution
 - Use MARS-C, based on BDDs and ADDs, to quantify the *error impact* and the *masking impact* of each gate.
 - Keep wires/gates with higher masking impact.
 - Remove wires/gates with higher error impact.

Redundancy Identification

Mean Error Impact

Mean error impact (**MEI**) of each internal gate G_i :

$$MEI(G_i^{d,a}) = \frac{\sum_{k=1}^{n_f} \sum_{j=1}^{n_F} P(F_j \text{ fails} | G_i \text{ fails} \cap \text{init} _glitch = (d, a))}{n_F \cdot n_f}$$

- MEI quantifies the probability that at least one primary output is affected by a glitch originating at the gate.
- The **larger** MEI a gate has, the **higher** the probability that a glitch occurring at this gate will be latched.

Mean Masking Impact

Mean masking impact on duration (**MMI**_D) of each internal gate G_i :

$$\mathrm{MMI}_{\mathrm{D}}(G_{i}^{d,a}) = \frac{\sum_{k=1}^{n_{f}} \sum_{j=1}^{n_{G}} \mathrm{MI}_{\mathrm{D}}(G_{j}^{d,a} \to G_{i})}{n_{G} \cdot n_{f} \cdot d}$$

- MMI_D denotes the normalized expected attenuation on the duration of all glitches passing through it.
- The larger MMI_D a gate has, the more capable of masking glitches this gate is.

Redundancy Manipulation Checking

Wire Addition Constraint

- $\triangle MEI(s) = MEI(t) \times [1-MMI_D(t)]$
- Wire $w (s \rightarrow t)$ can be added only if
 - $MEI(t) < T_1$
 - $-\mathsf{MMI}_{\mathsf{D}}(t) > T_2$

Redundancy Manipulation Checking

Wire Removal Constraint 1

- $\triangle MEI(u) = MEI(v) \times [1-MMI_D(v)]$
- Wire w' $(u \rightarrow v)$ can be removed only if

$$-\operatorname{MEI}(v) > T_3 \geq T_1$$

 $-MMI_D(v) < T_4 \leq T_2$

Wire Removal Constraint 2

- Wire w' $(u \rightarrow v)$ can be removed only if
 - Wire w' is crucial in logical masking at gate v.
 - The probability that gate *u* goes to the controlling value of gate *v* is sufficiently low.

Outline

- Background and motivation
- Related work
- Proposed framework
 - Redundancy addition and removal (RAR)
 - Metrics for gate characterization
 - Constraints on RAR
- Results and conclusion

Practical Considerations

Mean error susceptibility (**MES**) of each primary output F_i :

 $MES(F_j^{d,a}) = \frac{\sum_{k=1}^{n_f} \sum_{i=1}^{n_G} P(F_j \text{ fails} | G_i \text{ fails} \cap \text{init} _ glitch = (d, a))}{n_G \cdot n_f}$

Output failure probability of each primary output F_i :

$$P(F_j) = \frac{\Delta d \cdot \Delta a}{(d_{\max} - d_{\min}) \cdot (a_{\max} - a_{\min})} \sum_n \sum_m MES(F_j^{d_m, a_n})$$

Soft error rate of each primary output F_j :

 $\operatorname{SER}(F_j) = \operatorname{P}(F_j) \cdot \operatorname{R}_{\operatorname{PH}} \cdot \operatorname{R}_{\operatorname{EFF}} \cdot \operatorname{A}_{\operatorname{CIRCUIT}}$

Experimental Setup

- Technology: 70nm, BPTM
- Clock period: 250ps
- Setup time/hold time: 10/10ps
- Supply voltage: 1.0V
- (d_{min}, d_{max})/(a_{min}, a_{max}): (60, 120)ps/(0.8, 1.0)V
- *∆ d/ ∆ a*: 20ps/0.1V
- R_{PH}: 56.5 m⁻²s⁻¹
- R_{EFF}: 2.2×10⁻⁵

Experimental Results

Average Mean Error Susceptibility

16-20% reduction in average mean error susceptibility

Output Failure Probability

30-70% maximum reduction in output failure probability

Conclusion

- We propose a SER reduction framework
 - based on redundancy addition and removal (RAR)
 - using symbolic SER analysis (MARS-C)
 - for combinational logic
- Two metrics and three constraints are introduced to guide this framework towards SER reduction.
- Experiments on a subset of standard benchmarks reveal the effectiveness of our framework.

Thank you!

Backup Slides

Soft Errors – A New Great Concern in Logic Circuits

- Soft errors would significantly degrade the robustness of logic circuits, while the nominal SER of SRAMs tends to be nearly constant from the **130nm** to **65nm** technologies.
 - Source: Mitra et al., "Robust System Design with Built-in Soft-Error Resilience," IEEE Computer Magazine, Feb. 2005
- The SER of combinational logic is predicted to be comparable to that of memory elements by 2011.
 - Source: Shivakumar *et al.*, "Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logic," *Proc. Int'l Conference on Dependable Systems and Networks*, Jun. 2002

Soft Error Generation

Soft Error Modeling

- \mathcal{A} (Amplitude condition): $A > V_{th}$ (if the correct output is "0") or $A < V_{th}$ (if the correct output is "1")
- \mathcal{D} (Duration condition):

$$D > t_{setup} + t_{hold}$$

• T(Timing condition): $t \in [T_{clk} + t_{hold} - T - D, T_{clk} - t_{setup} - T]$

•
$$\mathbf{P}(\mathcal{A} \cap \mathcal{D} \cap \mathcal{T}) = \mathbf{P}(\mathcal{D} \cap \mathcal{T}) = \mathbf{P}(\mathcal{T} \mid \mathcal{D}) \cdot \mathbf{P}(\mathcal{D})$$

 $= \sum_{k} \left(\mathbf{P}[t] \in [T_{clk} + t_{hold} - T - D, T_{clk} - t_{setup} - T] \mid D = D_{k} \right) \cdot \mathbf{P}(D = D_{k}) \right)$
 $= \sum_{k} \left(\frac{D_{k} - (t_{setup} + t_{hold})}{T_{clk} - d_{init}} \cdot \mathbf{P}(D = D_{k}) \right)$

Sensitization BDDs

- Sensitization BDD of $G_i \rightarrow G_j$ is Boolean difference of G_i w.r.t. G_i
- $G_2 \rightarrow G_3$: Bool. diff. of G_3 w.r.t. G_2
- $G_3 \rightarrow G_5$: Bool. diff. of G_5 w.r.t. G_3
- $G_1 \rightarrow G_5$: Bool. diff. of G_5 w.r.t. G_1

 Sensitization BDDs include information about logical masking.

Duration ADDs

Topological order!

Duration ADDs are created with respect to sensitization BDDs (logical masking) and attenuation model (electrical masking).

Attenuation Model

 $V_{min} = V_{dd} - \frac{V_{dd}}{2\tau_p} \cdot D \qquad \Rightarrow \begin{cases} \text{if } D \leq \tau_p, \text{ the glitch is masked.} \\ \text{if } \tau_p < D \leq 2\tau_p, \text{ the glitch is attenuated .} \\ \text{if } D > 2\tau_p, \text{ the glitch remains the same.} \end{cases}$

31

Reconvergent Glitches

- Glitches on reconvergent paths arriving to inputs of a gate
 - can be merged into a new glitch.
 - can be masked by each other.

First input controlling, second non-controlling

MMI Computation – An Example

MMI Computation – An Example

Mean masking impact on duration (**MMI**_D) of gate G_5 :

$$MMI_{D}(G_{5}^{d,a}) = \frac{MI_{D}(G_{1}^{d,a} \to G_{5}) + MI_{D}(G_{2}^{d,a} \to G_{5}) + MI_{D}(G_{3}^{d,a} \to G_{5})}{3d}$$
$$= \frac{7d/12 + d/6 + d/2}{3d} = \frac{5}{12}$$

- The duration of a glitch is proportional to the probability of a soft error being latched, but the amplitude **is not**.
 - Use only mean masking impact on duration (MMI_D) as a guideline for SER reduction.

Why MEI & MMI?

- MEI
 - Glitch generation
 - Probability of generated glitches being registered

- MMI
 - Glitch propagation
 - Capability of filtering propagated glitches

Constraints on RAR

- $\triangle MEI(s) = MEI(t) \times [1-MMI_D(t)]$
 - Worst-case estimation
 - $MMI_D(t)$ increases after adding wire $s \rightarrow t$
 - More logical masking due to the new connection
 - More electrical masking due to larger gate delay
- $\triangle MEI(u) = MEI(v) \times [1-MMI_D(v)]$ - Average-case estimation

Experimental Results

Circuit	(# PIs, # POs, # Gates)	Dur. size (ps)	Ori. Avg. MES	Opt. Avg. MES	# Add. wires	# Rem. wires	Area over- head	SER reduc- tion
C432	(36,	60	3.57e-3	2.74e-3	37	29	3.45%	21.86%
	7,	100	1.87e-2	1.35e-2	24	12		
	156)	120	2.95e-2	2.43e-2	24	12		
C499	(41,	60	1.65e-3	1.40e-3	78	41	4.67%	18.64%
	32,	100	7.12e-3	5.77e-3	47	21		
	458)	120	10.9e-3	8.99e-3	52	27		
alu2	(10,	60	2.67e-3	2.22e-3	58	46	2.67%	18.27%
	6,	100	1.71e-2	1.38e-2	36	28		
	339)	120	2.74e-2	2.26e-2	28	23		
alu4	(14,	60	9.26e-4	8.10e-4	82	60	3.69%	13.54%
	8,	100	8.70e-3	7.57e-3	77	42		
	660)	120	1.46e-2	1.26e-2	72	42		
t481	(16,	60	10.5e-4	7.80e-4	162	76	7.11%	15.91%
	1,	100	7.30e-2	6.21e-2	136	57		
	566)	120	1.78e-1	1.59e-1	84	23		
ttt2	(24,	60	4.11e-3	3.42e-3	28	20	1.30%	14.88%
	21,	100	1.34e-2	1.13e-2	13	9		
	166	120	2.01e-2	1.71e-2	14	11		
x4	(94,	60	2.21e-3	1.80e-3	34	17	1.79%	18.75%
	71,	100	5.89e-3	4.76e-3	18	10		
	288)	120	8.72e-3	7.18e-3	19	7		
Avg.							3.53%	17.41%