A Design- for-Diagnosis Technique for Diagnosing Integrated Circuit Faults with Faulty Scan Chains

Fei Wang, Yu Hu, Huawei Li and Xiaowei Li
Key Laboratory of Computer System and Architecture,
Institute of Computing Technology
Chinese Academy of Science, Beijing, China
Outline

- **Introduction**
- Background
- Proposed Technique
- Experimental Results
- Conclusion
Introduction

- **Design for Diagnosis**
 - Methodology to reduce the complexity of diagnosis
- **Why diagnosis with faulty scan chain**
 - Scan is a widely used design-for-testability technique
 - to improve test quality
 - **Scan chains may occupy 30% silicon area [Kundu 94]**
 - accounts for almost 50% of chip failures [Yang 05]
 - Defects can occur in scan chains
 - Chips with faulty chains fail production diagnosis
 - To improve yield
 - Must identify source of problem
Previous Research

Hardware solutions
- Partner scan chain [Schafer 92]
- Insert XOR gates into scan chain [Edirisooriya 95]
- Modify scan cell design [Narayanan 97][Wu 98]

😊 diagnosis quality can be guaranteed
😊 diagnosis process is time efficient

Software solutions
- Inject-and-Evaluate methods [Stanley 01][Guo 01][Li 05]
- Statistical method [Huang 03]
- IDDQ method [Hirase 99][Song 04]

😊 No area and routing overhead
Helix Scan

● Features
 ◆ Diagnose faulty scan chain precisely and efficiently
 ◆ Diagnose the combinational circuits with faulty scan chains

● Basic Flow
 ◆ Locate the faulty scan cell
 ◆ Transform diagnosis patterns according to faulty position
 ◆ Run load-capture-unload process by “+” and “-” operation
Outline

• Introduction
• **Background**
• Proposed Technique
• Experimental Results
• Conclusion
Terminology

Upstream

- **Cell 5, Cell 4**

Downstream

- **Cell 2, Cell 1, Cell 0**

Even chain

- **Cell 4, Cell 2, Cell 0**

Odd chain

- **Cell 5, Cell 3, Cell 1**

EU/OU

- **Cell 4/Cell 5**

ED/OD

- **Cell 2, Cell 0/Cell 1**

Good scan input

- Index: 1 0 0 1 1 1 0

Stuck -At 0 (SA0)

- Index: 1 0 0 0 0 0 0

Stuck -At 1 (SA1)

- Index: 1 0 1 1 1 1 1
Outline

• Introduction
• Background
• **Proposed Technique**
 – Architecture of Helix Scan
 – Helix Scan chain fault diagnosis
 – Combinational circuit diagnosis with faulty Helix Scan chain
• Experimental Results
• Conclusion
Outline

• Introduction
• Background
• **Proposed Technique**
 – Architecture of Helix Scan
 – Helix Scan chain fault diagnosis
 – Combinational circuit diagnosis with faulty Helix Scan chain
• Experimental Results
• Conclusion
Helix Scan Chain Fault Diagnosis

1. Loading all-0-pattern if SA1
2. Conducting “+” operation
3. Unloading and Observing
Combinational Circuit Diagnosis with Faulty Helix Scan Chain

- Objective Pattern: 0011, 1100

Clock: 1 2 3 4
Operation: + + - +
Odd Chain: 1 0 1 0
EU: x x x x
ED: x x 0 0
Outline

• Introduction
• Background
• Proposed Technique
• Experimental Results
• Conclusion
Experiment

- Evaluate the latency of HS cell in Function mode and Scan mode in 0.13um technology.
- Experiments are performed on ISCAS'89 to evaluate the area overhead.
- Experiments are performed on ISCAS'89 to evaluate the routing overhead.
latency of HS cell

- The HS cell is 20ps later than the DFF
 - the falling time of HS cell is about 60ps latter than traditional DFF
 - The rising time of HS cell is about 20ps later than traditional DFF

(a)
(b)
Comparison of Routing Overhead

This Work

[16]
Comparison Diagnosis Resolution with Software Solutions

<table>
<thead>
<tr>
<th>CUD</th>
<th>s5378</th>
<th>s9234</th>
<th>s13207</th>
<th>s15850</th>
<th>s38584</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA0</td>
<td>1/1</td>
<td>1.0/2</td>
<td>1.6/5</td>
<td>1.1/2</td>
<td>1.5/4</td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>1.1/2</td>
<td>1.2/7</td>
<td>1.1/2</td>
<td>1.0/2</td>
</tr>
<tr>
<td>SA1</td>
<td>1/1</td>
<td>1.0/1</td>
<td>1.3/4</td>
<td>1.1/2</td>
<td>1.5/4</td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>1.1/2</td>
<td>1.2/5</td>
<td>1.1/2</td>
<td>1.0/2</td>
</tr>
</tbody>
</table>

(Average/Worst)
Outline

• Introduction
• Background
• Proposed Technique
• Experimental Results
• Conclusion
Conclusion

- **Helix Scan**
 - Proposed a novel scan architecture
 - Precisely diagnose the fault in scan chain
 - Diagnose the combinational circuit with faulty scan chains
 - Compatible with conventional scan-based design
Thank You !!!