

GECOM: Test Data Compression Combined with All Unknown Response Masking

Youhua Shi Masao Yanagisawa Nozomu Togawa Tatsuo Ohtsuki

Waseda University

Asia and South Pacific Design Automation Conference January 24, 2008

Outline

- Background
- Motivation
- □ GECOM Technique
 - On-Chip Architecture
 - Test Pattern Generation
- Experimental Results
- Conclusions

But...

Many Sources of Unknown X's in Output Response

Uninitialized non-scan FFs, Tri-State logic, Multi-cycle Paths, Etc.

4

- Major Issue for Test Compression
 - X's Corrupt Final Signature
 - Prevents Observation of other responses

Handling X's

- X-Masking
- X-Tolerant Compactor

- X-Masking schemes
 - [Naruse ITC'03], [Chickermane ITC'04], [Mitra DAC'05]
- Problems
 - Masking data required
 - Overmasking some non-X responses

Traditional Approach 2: X-tolerant

X-Tolerant Schemes

- Selective Compactor
 - [Wohl ITC'03], [EDT US patent]
 - Discard majority of responses

ECC-based Compactor

Use Xor matrix to propagate one response to multiple outputs : reducing X-induced masking probability

Problems

All above approaches guarantee error detection in presence of one X

No guarantee for multiple unknowns

GECOM Technique

- Intergraded approach:
 Generation,
 Compression and
 Masking
- High compression
- No limit on number or distribution of Xs
- No test loss
 - Xs never block non-X values
 - Xs don't increase pattern count
 - Xs don't limit test coverage
- design simplicity

Scan Stimulus Decompression

Unknown Masking

Decompression Example

Test Generation in GECOM

1. Run ATPG

- 2. Extract the Xs' positions and set constraints
- 3. Run ATPG again to obtain a test cube
- 4. Count the number of specified 0s and 1s
 - If (p(0) < p(1)), then the unspecified bits with unknown responses in the previous vector are assigned 0s, and the other unspecified bits are assigned 1s; and vise versa.
- 5. Perform fault simulation and drop all detected faults from the fault list.
- 6. If undetected faults remains, go to Step 2.

Compression Results

ckt.	Nsc	Nc	Ng	TD	TE	Cr
s13207	50	8	231	309,078	77,616	74.9%
	100	9	257	343,866	48,573	85.9%
	200	10	271	362,598	43,360	88%
	50	8	157	187,458	30,144	83.9%
s15850	100	9	170	202,980	27,540	86.4%
	200	10	168	200,592	25,200	87.4%
s38417	50	8	198	647,856	104,544	83.9%
	100	9	220	719,840	100,980	86.0%
	200	10	239	782,008	64,530	91.7%
s38584	50	8	287	833,448	137,760	83.5%
	100	9	299	868,296	80,730	90.7%
	200	10	297	862,488	71,280	91.7%

Comparison on Compression

ckt	SCC		Proposed (stimulus + masking bits)		
	vectors	TE	vectors	TE	
s13207	178	22784	271	43360	
s15850	264	25344	168	25200	
s38417	312	89856	239	64530	
s38584	203	38976	297	71280	

Comparison on Compression

Comparison on Test Quality

	wo GECO	M masking	GECOM masking		
CUT	U.O. Res	Obs. Loss (%)	U.O. Res	Obs. Loss (%)	
s13207	933	18	0	0	
s15850	908	16.99	0	0	
s38417	3778	18.99	0	0	
s38584	2770	16.1	0	0	
ASIC 1	5460	4.5	0	0	
ASIC 2	204730	29.5	0	0	
ASIC 3	29585	1.0	0	0	

Overall Comparison

	ATPG-dependent Compression	GECOM
Traditional ATPG reusable	Maybe	Yes
Fault Coverage Loss	Maybe	No
Integrated Compression on Stimulus and masking bits	No	Yes
Computation Overhead	High	Neglectable
All-X Masking	No	Yes
Encode/Decode Complexity	High	Low
Compression Efficiency	High	High

Conclusions

- Novel test technique
 - Integrated with test generation, test compression and unknown masking
- Great compression
- All unknown response masking
 - Any number and distribution of Xs
 - No overmasking
 - No observable response coverage loss
- Suitable for both space compactors (e.g. XOR-tree) and time compactors (e.g. MISR)

Thank You!!!

Questions ?

Comments / feedback welcome: <shi@yanagi.comm.waseda.ac.jp>