Mixed Integer Linear Programming-based Optimal Topology Synthesis of Cascaded Crossbar Switches

Minje Jun Sungjoo Yoo Eui-Young Chung

Contents

- **o** Motivation
- **o** Related Works
- o Overview of the Method
- **o** Problem Definition
- o Constraints and Formulations
- **o** Experiment
- o Conclusion

Motivation

- o On-chip Interconnection Methodology Shifting
 - Shared bus \rightarrow Hierarchical bus or Bus matrix \rightarrow Switch-based design
 - Overaber Switch Sufferinge egeinet
- o Crossbar Switch Sufferings against Its Size
 - Increase in logic delay
 - Control blocks (decoder, arbiter, etc) grow
 - Results in lower speed
 - Worse then linear increase in silicon area
 - Quadratic increase of # of bus lines

Motivation

o Areximiutor Frequencies lagra Selvilitsh Sagra ist Its Size

Synthesis result of RTL code from AMBA Designer with Samsung 90nm process technology

Motivation

Ecoperatibilas Gauge Crossbar DaitkbohetBask

Can achieve faster speed Can achieve area reduction

Related Works

- **o** Does it need to be fully connected?
 - S.Murali *et al*. and S.Pasricha *et al*. presented synthesis of partially connected bus matrix [1-3]
 - Limitation on modularity and scalability
- **o** Can't it be shared by multiple masters/slaves?
 - S.Murali *et al.* presented clustering method to minimize the central crossbar switch [4]
 - An extereme case of our work

Related Works

- **o** How about in NoC area?
 - K.Srinivasan *et al.* presented irregular topology synthesis method using fixed size routers [5]
- J.Yoo *et al.* first presented cascaded crossbar switch, based on simulated annealing method [6]
 - Does not targetting optimality

Overview of the Synthesis Process

Problem Definition

• Communication Requirement Graph CRG G(V_M, V_S, E)

- $v_m \in V_M$: master node
- $v_s \in V_s$: slave node
- $e_{m,s} \in E$: edge between v_m and v_s
- w(e_{m,s}) : BW requirement of e_{m,s}
- d(e_{m,s}) : latency constraint of e_{m,s}
- o Crossbar Switch Physical Characteristics
 - $A_{m,s}$: area of $m \times s$ crossbar switch
 - *F_{m,s}*: maximum freq. of *m*x*s* crossbar switch

Problem Definition

o Cascaded Crossbar Topology T(MX,SX,XX)

- $MX_{m,x}$: 1 *iff* master v_m is connected to crossbar x
- $SX_{s,x}$: 1 *iff* slave v_s is connected to crossbar x
- XX_{x',x''}: 1 *iff* crossbar x'is connected to crossbar x''
- o Our problem is
 - to find *T(MX,SX,XX)* which optimizes the design

Assumptions

- o Single clock frequency and data width
 - Bridges for freq. and/or data width conversion already included in IP interfaces
- o Single path routing
 - Each $e_{m,s}$ in CRG is accommodated by a single path
 - Productized switch modules [7-8] remain unchanged
 - Still, a master-slave pair can communicate with multiple path by using multiple ports

Topology Feasibility Constraint

• A master or slave must be connected to one and only one crossbar switch

 $\begin{aligned} \forall v_m \in V_M, \ \sum_{x \in X} MX_{m,x} &= 1 \\ \forall v_s \in V_S, \ \sum_{x \in X} SX_{s,x} &= 1 \end{aligned}$

- o A crossbar switch must be
 - not used : $PM_x = PS_x = 0$

• or larger than 1x2 or 2x1 :

 $PM_x > 0 \& PS_x > 0 \& PM_x + PS_x > 2$

Single Communication Path Constraint

- Depth-n path matrix $D^n_{m,X_1,X_2,...,X_n,S}$
 - I iff master v_m is connected to slave v_s through x₁, x₂,..., x_{n-1}, and x_n

$$D_{m,x_{1},x_{2},...,x_{n},s}^{n} = MX_{m,x_{1}} \times \prod_{k=1}^{n-1} XX_{x_{k},x_{k+1}} \times SX_{s,x_{n}}$$

$$D_{m,x_{1},x_{2},...,x_{n},s}^{n} \ge MX_{m,x_{1}} + \sum_{k=1}^{n-1} XX_{x_{k},x_{k+1}} + SX_{s,x_{n}} - n$$

$$D_{m,x_{1},x_{2},...,x_{n},s}^{n} \le 1/n \times \left[MX_{m,x_{1}} + \sum_{k=1}^{n-1} XX_{x_{k},x_{k+1}} + SX_{s,x_{n}} - 1\right]$$

Single Communication Path Constraint

• For a master-slave pair with $w(e_{m,s})>0$, there must exist a communication path

$$\sum_{x \in X} D^1_{m,x,s} + \sum_{x_1, x_2 \in X} D^2_{m,x_1, x_2, s} + \dots + \sum_{x_1, x_2, \dots, x_N \in X} D^N_{m,x_1, x_2, \dots, x_N, s} = 1$$

o When latency constraint exists, $d(e_{m,s})=k$

$$\sum_{x \in X} D^1_{m,x,s} + \sum_{x_1,x_2 \in X} D^2_{m,x_1,x_2,s} + \dots + \sum_{x_1,x_2,\dots,x_k \in X} D^k_{m,x_1,x_2,\dots,x_k,s} = 1$$

Bandwidth Constraint

o Link between x_1 and x_2 is loaded

• by depth-2 connection $(m_1 - s_1)$

 $\varepsilon^2_{x_1,x_2,m_1,s_1} = w(e_{m_1,s_1}) \times D^2_{m_1,x_1,x_2,s_1}$

by depth-3 connection (m₂-s₂)

$$\varepsilon^3_{x_1,x_2,m_2,s_2} = w(e_{m_2,s_2}) \times (\sum_{x' \in X} D^3_{m_2,x_1,x_2,x',s_2} + \sum_{x' \in X} D^3_{m_2,x',x_1,x_2,s_2})$$

Bandwidth Constraint

o Total weight bewteen x₁ and x₂ in above example

o Bandwidth Constraint $\forall x_1 < x_2 \in X, E_{x_1,x_2} \leq CostFreq \times channelwidth$

crossbar network frequenaynel width of the switches

Table Referencing with MILP Variables

- **o** Obtain indexing matrix $K_{x,m,s}$
 - 1 *iff* crossbar x is mxs, otherwise 0

$$\begin{split} K_{x,m,s} &\leq 1 - \beta \{ m - PM_x + \alpha(s - PS_x) \} \text{ less than 1 by } \beta \\ K_{x,m,s} &\leq 1 + \beta \{ m^{\text{teger}} PM_x + \alpha(s - PS_x) \} \text{ by } \alpha, \text{ thus fractional part} \\ \sum_{m=0}^{|V_M|} \sum_{s=0}^{|V_M|} \kappa_{x,m,s} = 1 \end{split}$$

 $K_{x,m,s}$ can and must be 1 if inside the brace is 0

Experiemt Setting

o Applications

- App I : Industrial strength SoC (12x4)
- App II : Mpeg4 decoder example (9x3) [9]
- o Objectives
 - Frequency maximization w/o area upper bound
 - Frequency maximuzation w/ area upper bound (30%)
 - Area minimization w/o freq. lower bound
 - Area minimization w/ freq. lower bound (380Mhz)

Result for App I

- Freq. improvement is up to 37.3%, but with 43.6% area overhead (Objective I)
- Area reduction is up to 12.7%, and with 21.9% freq. improvement (objective III)

Freq. Area

Result for App I

Result for App II

- Freq. improvement is up to 22.9%, but with area overhead of 68.4% (Objective I)
- **o** For area minimization, the single crossbar is the best solution
- **o** Freq. lower bound 380Mhz achieved with only 4% area overhead

Freq. Area

Result for App II

Conclusion

- We proposed
 - cascaded crossbar switch network
 - using arbitrary sized crossbar switches
 - MILP-based exact topology synthesis method
- **o** Experimental result shows
 - up to 37.3% (12.7%) freq. (area) improvement
 - synthesis time : 15.7 hours (App I) / 0.36 hours (App II) on average
- **o** Future Work
 - Time-efficient heuristic algorithm
 - Adding bbjective for power consumption

Thank You

References

- [1] S. Murali and G. De Micheli, "An Application-Specific Design Methodology for STbus Crossbar Generation", *DATE 2005*, pp. 1176-1181
- [2] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Constraint-Driven Bus Matrix Synthesis for MPSoC", *ASPDAC 2006*, pp. 30-35
- [3] S. Pasricha, N. Dutt, "COSMECA: application specific co-synthesis of memory and communicat ion architectures for MPSoC", DATE 2006, pp. 700-705
- [4] S. Murali, L. Benini, and G. De Micheli, "An Application- Specific Design Methodology for On-C hip Crossbar Generation", Trans. VLSI (to appear), available at http://infoscience.epfl.ch/
- [5] K. Srinivasan, K. S. Chatha, and G. Konjevod, "Linear Programming Based Technique for Synth esis of Network-on- Chip Architectures", *IEEE TVLSI,* April 2006, vol. 14, pp. 407-420
- [6] J. Yoo, S. Yoo, and K. Choi, "Communication Architecture Synthesis of Cascaded Bus Matrix", *ASPDAC 2007*, pp. 171-177
- [7] ARM, www.arm.com
- [8] Sonics Inc., <u>www.sonicsinc.com</u>
- [9] K. Srinivasan, K. S. Chatha, "A low complexity heuristic for design of custom network-on-chip a rchitectures", DATE 2006, pp.130-135