Automatic Interface Synthesis based on the Classification of Interface Protocols of IPs

ChangRyul Yun¹, DongSu Kang², YoungHwan Bae³, HanJin Cho³, KyoungSon Jhang²

¹Agency for Defense Development, KOREA ²Dept. of Computer Engineering, ChungNam National University, KOREA ³Multimedia SoC Design Team, ETRI, KOREA

Outline

- Introduction & Motivation
 - Interface circuit structures
- Proposed Interface Synthesis Method
 - Interface Synthesis Flow
 - SIMPLE (Simplified Interface Protocol Description Language)
 - Classification of Interface Protocols of IPs
 - The Structures of interface Circuits
 - Interface Synthesis Algorithm
- Experiments
- Conclusion

Introduction

- IP-based Design Methodology in SoC
 - A methodology to respond to the demands of high performance, complex functionality, short time-tomarket
 - One of key issues: The difficulty of IPs integration
 - IPs use various interface protocols
 - Interface circuits between IPs are necessary.
- Interface circuits
 - Time-consuming and error-prone task
 - Automatic interface circuit generation method is necessary.

Introduction

 Automatic Interface Synthesis Flow based on interface FSMs

Motivation

Motivation

- The various characteristics of interface protocols of IPs
 - Address and data transfer characteristics
 - The number of addresses on burst
 - Shared signal or different signals for an address and data
 - No Address
 - Different clock frequencies
 - Different data widths
- These differences should be considered on an interface synthesis algorithm.

Product FSM Based Structure

- Product FSM based interface circuits
 - Consist of a product FSM and buffers
 - Allow the transfer of data without any clock cycle delay.

The interface circuit structure based on a product FSM[3]

^[3] Vijay D'*silva*, S. Ramesh and Arcot Sowmya, "Bridge Over Troubled Wrappers: Automated Interface Synthesis," Proceedings of the 17th Int ernational Conference on VLSI Design 2004 Page(s):189 – 194

FSMD Based Structure

- FSMD(FSM+Data Path) based interface circuits
 - Consist of two FSMDs and buffers(Queue)
 - Every data transfer has at least two clock cycle.

The interface circuit structure based on a product FSM[6]

[6] Dongwan Shin and Daniel Gajski, "Interface Synthesis from Protocol Specification," Technical Report (CECS-02-13), April 12 2002, Center for Embedded Computer Systems University of California, Irvine

IPC Based Structure

- IPC (Interface Protocol Component) [10]
 - Protocol Convert
 - From transaction level to cycle level vice versa.
 - No internal buffers

Execute transaction by transaction code Recognize transaction by signals

[10] ChangRyul Yun, KyoungSon Jhang, "An Interface Protocol Component Modeling Language," Proceedings of the 15th ASIC/SOC Conference, Sept. 2002, Page(s): 456-460

Proposed Interface Synthesis Flow

- Classify Interface Protocols
- Select a synthesis algorithm for interface structure depending on analysis results or user constraints

Interface FSM

- Protocol Description Methods
 - Waveform or timing diagram
 - Formal language
- SIMPLE (Proposed Description Method)
 - Simplified Interface Protocol Description Language[10]
 - Interface Protocol: Transfers + Parameters
 - Transfer: the behavior of ports on a cycle
 - Parameter
 - Address, data, transaction information and etc.
 - Used to match the different feature of IPs

[7] ChangRyul Yun, YoungHwan Bae, HanJin Cho, KyoungSon Jhang, "Automatic Synthesis of Interface Circuits from Simplified IP Interface Protocols," Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture Conference (ACSAC 2006), September 6-8th, Page(s):581-587

Interface FSM

• SIMPLE

Reserved Parameter

- 2: transaction type
- ③: transaction length
- (4): address
- User Defined Parameter 5, 6

AHB Master interface Protocol 12

Interface FSM

The categorization of Interface protocols

Address & data Transfer Characteristics

Category	Feature	Examples
A	Separated ports for addresses, write data, and read data	AHB, OCN, VCI, OCP,PLB, etc.
В	Shared one port for addresses, write data, and read data	PCI, PCI-X, etc.
С	No address	DES, AES, Color converter, etc

Selection of Interface Circuit Structure

Type I

• Type I – 1

- For a pair of Category A IP
- A buffer can be employed for each port pair.
- Data can be stored or bypassed to reduce transmission delay.

• Type I – 2

-For a pair of Category A : Category B -Generate or ignore addresses

Type I - 1

Matching Information for a pair of PCI(M):AHB(S)

[Clock Ratio] 1 : 1 //// Master IP, Slave IP
//// Buffer Size, Signal (master), MSB, LSB,
//// Signal (slave), MSB, LSB, \$address or \$wdata or \$rdata
[Port Pair] 1 , FA , 31 , 0 , haddr , 31 , 0 , \$address;
[Port Pair] 1 , FD , 31 , 0 , hwdata , 31 , 0 , \$wdata;
// Burst Transaction Length, Signal(master), MSB, LSB,
// Values, Signal(slave), MSB, LSB, Values
[TM] 1 , FS , 3 , 2 , "00" , HBURST , 2 , 0 , "000";
[TM] 4 , FS , 3 , 2 , "01" , HBURST , 2 , 0 , "011";
[TM] 16 , FS , 3 , 2 , "11" , HBURST , 2 , 0 , "111";

Type - II

• IPC Based Structure

Type - II

• Type II - 4

Type II - 3

• Matching Information for a pair of AHB(M):DES(S)

// Buffer Size, Master Port Name, MSB, LSB, Slave Port Name, MSB, LSB,
// Address Port, MSB, LSB, address value, \$Data or \$Control;
[Port Mapping] 1, HWDATA, 31, 0, KEY, 63, 32, HADDR, 7, 0, 0x00, \$Data;
[Port Mapping] 1, HWDATA, 31, 0, KEY, 31, 0, HADDR, 7, 0, 0x04, \$Data;
[Port Mapping] 1, HWDATA, 31, 0, Plain, 63, 32, HADDR, 7, 0, 0x08, \$Data;
[Port Mapping] 1, HWDATA, 31, 0, Plain, 31, 0, HADDR, 7, 0, 0x0C, \$Data;
[Port Mapping] 1, HWDATA, 31, 0, Cipher, 63, 32, HADDR, 7, 0, 0x28, \$Data;
[Port Mapping] 1, HWDATA, 31, 0, Cipher, 31, 0, HADDR, 7, 0, 0x28, \$Data;
[Port Mapping] 1, HWDATA, 31, 0, Cipher, 31, 0, HADDR, 7, 0, 0x2C, \$Data;
[Port Mapping] 1, HWDATA, 0, 0, START, 0, 0, HADDR, 7, 0, 0x14, \$Control;
[Port Mapping] 1, HWDATA, 0, 0, enc_dec, 0, 0, HADDR, 7, 0, 0x14, \$Control;

 Graphical User Interface (GUI) or a script file can be used to construct the matching description.

Experiments

• The comparison between manual and automatic design

Type	Master · Slave	Area (S	Slices)	f _{max}		A / M	
1 9 9 0		М	А	М	Α	Area	f _{max}
	AHB:OCN	57	103	234	181	1.8	0.8
	OCN:AHB	112	374	197	105	3.3	0.5
	BVCI:AHB	44	61	580	356	1.4	0.6
	AHB:APB	66	121	268	249	1.8	0.9
I–2	AHB:PCI	50	72	315	238	1.4	0.9
	PCI:AHB	82	212	258	144	2.6	0.6
II–1	AHB:PVCI (50Mhz, 32bit: 12.5Mhz, 32bit)	310	356	214	191	1.1	0.9
II–2	AHB:PVCI (50Mhz, 32bit: 50Mhz, 8bit)	244	316	225	208	1.3	0.9
II–3	AHB:PVCI (12.5Mhz, 32bit: 50Mhz, 8bit)	237	316	204	204	1.3	1.0
-4	AHB:DES	134	145	225	197	1.1	0.9

Experiments

• Compare product FSM-based with IPC-based Structure

Master	Type I (Product FSM Based)						Type II (IPC Based)					Type I / Type II		
Slave	# S	# T	Area	f _{max}	W	R	# S	# T	Area	f _{max}	W	R	Area	f _{max}
AHB:OCN	9	53	203	181	5	12	6	34	174	198	5	14	1.2	0.9
OCN:AHB	12	89	374	105	4	12	6	35	256	121	4	14	1.5	0.9
AHB:BVCI	18	48	324	219	5	8	6	20	276	228	5	10	1.2	1.0
BVCI:AHB	10	42	249	201	4	8	7	21	205	217	4	10	1.2	0.9
AHB:PVCI	10	39	252	204	5	8	6	19	267	212	5	10	0.9	1.0

Experiments

• The comparison with previous work[3]

Master:Slave	Clocks	Data Width	Prev Me	vious thod	Our Method		
			# S	# T	# S	# T	
AHB:PLB	1:1	1:1	7	12	6	12	
OCP:AHB	1:1	1:1	8	18	9	20	
AHB:PLB	1:2	1:1	12	15	6	8	
OCP:PLB	1:1	1:3	17	32	6	8	

#S : The number of States, #T : The number of transitions

[3] Vijay D'*silva*, S. Ramesh and Arcot Sowmya, "Bridge Over Troubled Wrappers: Automated Interface Synthesis," Proceedings of the 17th Int ernational Conference on VLSI Design 2004 Page(s):189 – 194

Conclusion

- Automatic Interface Synthesis based on protocol categorization
 - Chose an appropriate structure of interface circuits based on
 - Interface protocol category
 - Clock frequency
 - Data width
 - System level requirements (by user constraints)
 - Protocol Classification
 - Our Synthesis algorithm selects an interface circuit structure depending on the classification of interface protocols

Conclusion

- Product FSM-based structure
 - Less data transmission latency
 - Somewhat larger area and slower maximum operating frequency
- IPC-based structure
 - Less states and transitions than product FSM-based in case that IPs use different frequencies and/or data widths.
- The Performance
 - Comparable with performance of the manual designs

Thank You!