

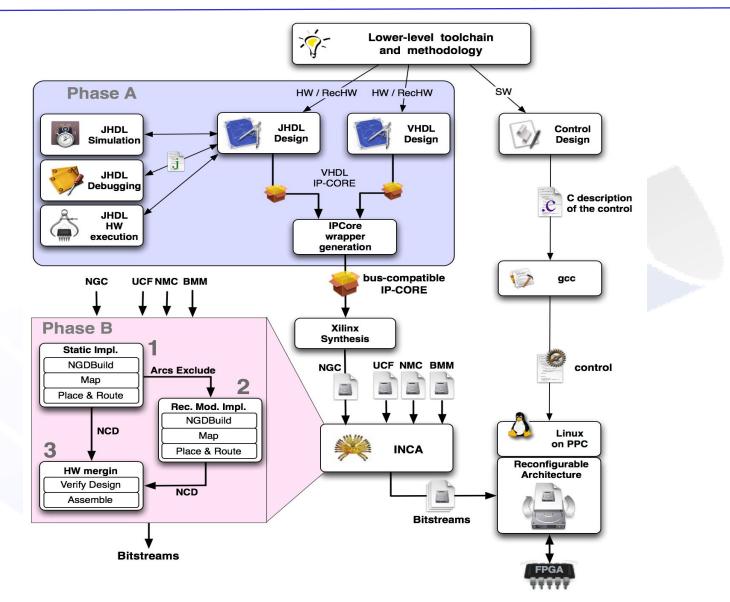
The Shining embedded system design methodology based on self dynamic reconfigurable architectures

C. A. Curino, L. Fossati, F. Redaelli, M. D. Santambrogio, D. Sciuto (curino,fossati,rana,santambr, francesco.redaelli@dresd.org

Speaker: Luca Fossati

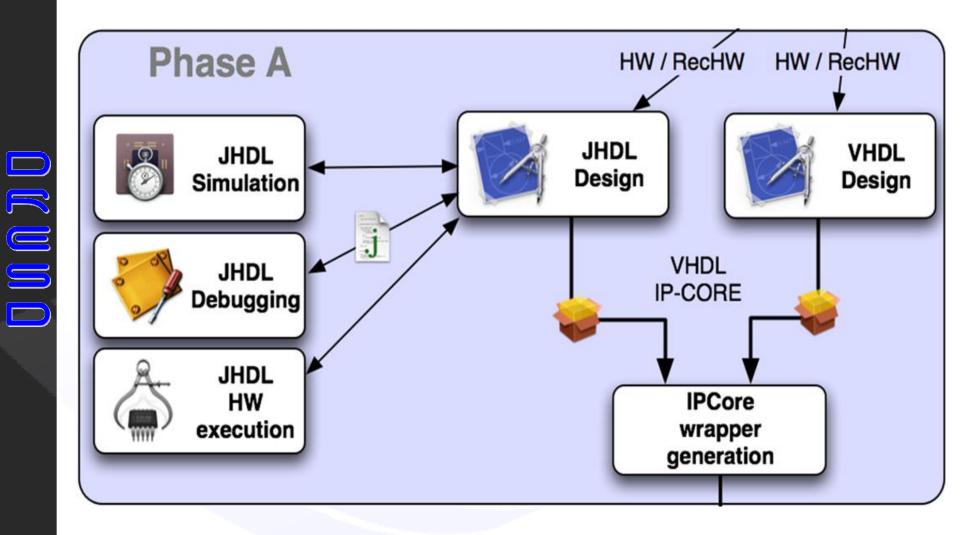
Outline

- Motivations
- The Shining Methodology
 - Phase A
 - Phase B
 - Gnu/Linux OS
- Experimental Results
 - Shining Results
 - Case Study
- Conclusion and Future Work

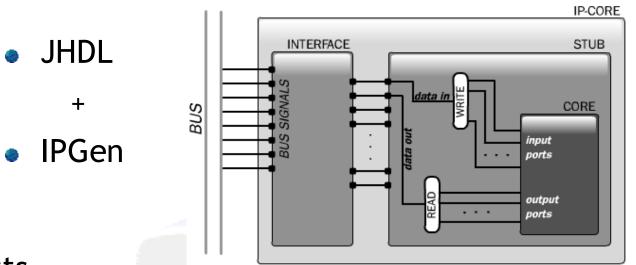


Motivations

- No generalized methodology allowing both the automatic derivation of a complete system solution able to fit into the final device, and mixed hardware-software solutions, exploiting partial reconfiguration capabilities
- Needs of a methodology that organizes the input specification of a complex System-on-Chip design into three different components: hardware, reconfigurable hardware and software, each handled by dedicated subflows

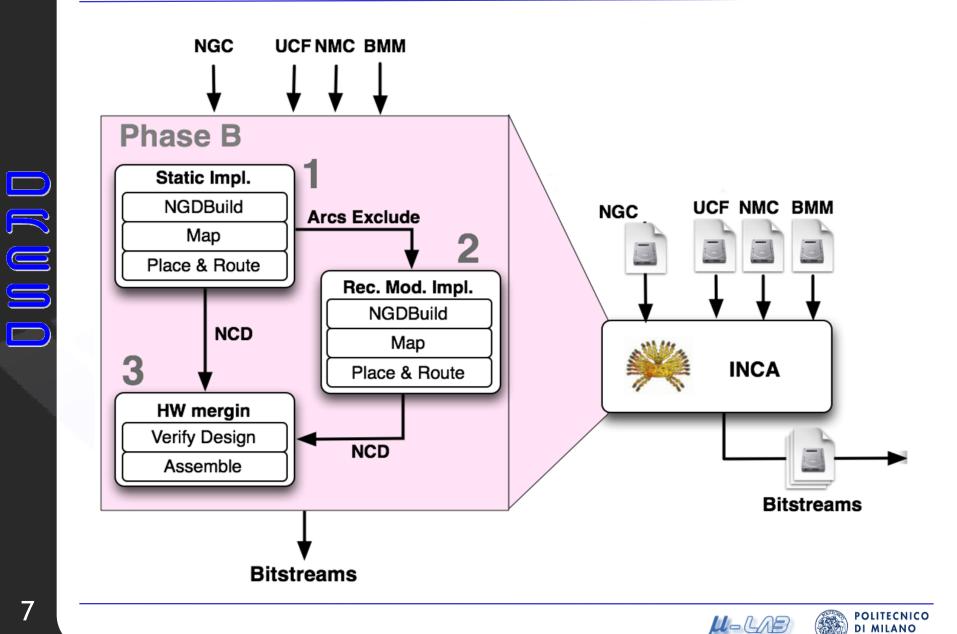


The Shining Methodology

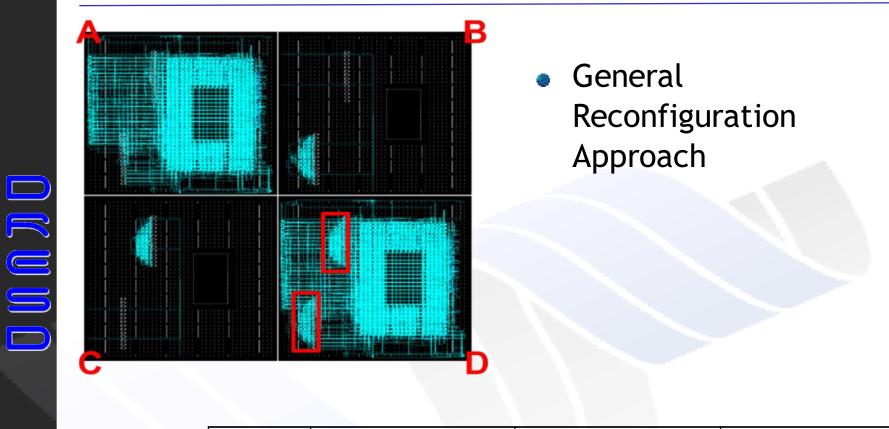


Phase A

Phase A - Results


IPGen Tests

IP-Core	4-input LUTs	Ratio	Slices	Ratio	ar	d	Time(s)
IrDA	15		11		136	0.081	
	146	9.73	103	9.36	136	0.758	0.045
FIR	273		153		272	0.562	
	308	1.13	173	1.13	272	0.636	0.058
RGB2YCbCr	848		913		952	0.959	
	1028	1.21	940	1.03	952	0.987	0.063
Complex ALU	1750		950		952	0.997	
	2089	1.19	1079	1.14	1088	0.991	0.071



Phase B - INCA

Phase B - Results

	Phase B	s200		VP7		FX12	
INCA	(#)	(S)	%	(S)	%	(S)	%
Results	1	133,86	18.8%	224.91	18.0%	1060.28	39.0%
	2	110.72	14.1%	165.69	13.3%	249.72	9.1%
	3	466.19	65.5%	852.13	68.5%	1407.36	51.8%
	Total	710.77	100.00%	1242.73	100.00%	2717.36	100.00%

GNU/Linux OS

- The Software Architecture allows the former two phases to be integrated
- Reconfiguration process handled has a standard OS feature
- The /dev directory contains the information on the *Reconfigurable Devices*
- *The /dev/icap* has to be used to handle the physical reconfiguration processes

Shining Results

Modules	Bus	Speedup
Software		1
4 pixels per time	32bit OPB	0.97
Pipelined Core	32bit OPB	1.99
Pipelined Core	32bit PLB	2.08
Pipelined Core	64bit PLB	2.41

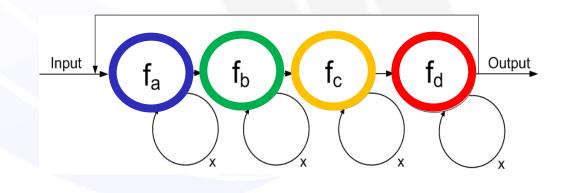
Canny Algorithm

Sobel Convolution

Modules	Bus	Speedup
Software		1
4 pixels per time	32bit OPB	0.79
Pipelined Core	32bit OPB	1.73
Pipelined Core	32bit PLB	1.74
Pipelined Core	64bit PLB	1.68

Modules	Bus	Speedup	
Software		1	
4 pixels per time	32bit OPB	0.65	
Pipelined Core	32bit OPB	1.33	
Pipelined Core	32bit PLB	1.41	
Pipelined Core	64bit PLB	1.9	

Laplace Convolution



Case Study: Digital Image Processing

- The canny edge detector is used to detect the edges in a given input image i [Kb]
- 4 functionalites
 - Image smoothing \rightarrow remove the noise
 - Gradient operator \rightarrow highlight regions with high spatial derivative
 - Non-maximum suppression \rightarrow reveal the edges
 - Hysteresis → remove false edges
- Each functionality has to be executed using an input of j [Kb]
 - $j \le i$ and x = i/j

Case Study: Digital Image Processing

- Time analysis to identify a first partition in HW core and SW core
 - Non-maximum suppression implemented as a SW core
 - Image smoothing, Gradient operator and Hysteresis implemented as HW cores

Applications Functions	Slices	Percentage	
Static side and			
non-maximum suppression	2662	54	
Image smoothing	245	4	
Gradient computation	2168	44	
Hysteresis threshold	5343	108	

Conclusion and Future Work

- The Shining methodology provides an effective and low cost approach to the partial dynamic reconfiguration and mixed HW-SW execution problems
- Introduces dynamic reconfiguration features at design time
- The proposed flow organizes the input specification into three different components: hardware, reconfigurable hardware and software, managed by proper portion of the methodology
- The complete design flow has to be automated to help the designer in a more effective way

• Thank you...

